

US009172987B2

(12) United States Patent

Lemmons et al.

(54) METHODS AND SYSTEMS FOR UPDATING FUNCTIONALITY OF A SET-TOP BOX USING MARKUP LANGUAGE

(75) Inventors: Thomas R. Lemmons, Sand Springs,

OK (US); Jon C. Zaring, Tulsa, OK

(US)

(73) Assignee: Rovi Guides, Inc., Santa Clara, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 13/193,233

(22) Filed: Jul. 28, 2011

(65) **Prior Publication Data**

US 2012/0054800 A1 Mar. 1, 2012

Related U.S. Application Data

(63) Continuation of application No. 11/432,686, filed on May 10, 2006, now Pat. No. 8,010,979, which is a continuation of application No. 10/171,424, filed on Jun. 12, 2002, now Pat. No. 7,073,188, which is a

(Continued)

(51) **Int. Cl.** *H04N 21/4147*

(2011.01)

H04N 21/462 (2011.01)

(Continued)

(52) U.S. Cl.

CPC *H04N 21/4147* (2013.01); *H04N 5/44543* (2013.01); *H04N 21/4355* (2013.01); *H04N 21/482* (2013.01); *H04N 21/4821* (2013.01); *H04N 21/4821* (2013.01);

(Continued)

(10) Patent No.:

US 9,172,987 B2

(45) **Date of Patent:**

*Oct. 27, 2015

(58) Field of Classification Search

CPC H04N 21/40-21/4888; H04N 21/8543; H04N 5/44543

348/460, 461

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,278,677 A 10/1966 Fannoy 3,440,427 A 4/1969 Kammer

(Continued)

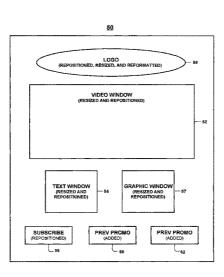
FOREIGN PATENT DOCUMENTS

AU 731010 7/1998 AU 733993 2/1999

(Continued)

OTHER PUBLICATIONS

"A Financial Times Survey: Viewdata (Advertisement)." Financial Times, Mar. 20, 1979.


(Continued)

Primary Examiner — Larry Sternbane (74) Attorney, Agent, or Firm — Ropes & Gray LLP

(57) ABSTRACT

An interactive television program guide is provided. Program guide display elements are arranged and styled using markup language documents. These markup language documents may also indicate and select program guide functions. The program guide interprets the markup language documents and generates the display screens and program guide functionality without user intervention. The program guide may also be updated by supplying new markup language documents that modify display screens and program guide functionality. The markup language documents may be supplied by a main facility or a television distribution facility.

16 Claims, 12 Drawing Sheets

	Relate	ed U.S. A	pplication Data	4,347,498			Lee et al.
	continuation of	of applica	ation No. 09/227,358, filed on	4,367,559 4,375,651		1/1983 3/1983	Tults Templin et al.
			No. 6,442,755.	4,381,522	Α	4/1983	Lambert
(60)	Provisional an	nlication	No. 60/091,975, filed on Jul. 7,	4,388,645 4,390,901			Cox et al. Keiser et al.
(00)	1998.	рисацоп	1110. 00/091,973, med on 3di. 7,	4,393,376	Α	7/1983	Thomas
	1990.			4,405,946 4,412,244		9/1983	Knight Shanley, II
(51)	Int. Cl.			4,413,281			Thonnart
	H04N 5/445		(2011.01)	4,420,769		12/1983	
	H04N 21/482		(2011.01)	4,425,579 4,425,581		1/1984	Merrell Schweppe et al.
	H04N 21/84 H04N 21/854	2	(2011.01) (2011.01)	4,429,385	Α	1/1984	Cichelli et al.
	H04N 21/634. H04N 21/435		(2011.01)	4,439,784 4,449,249		3/1984 5/1984	Furukawa et al. Price
(52)	U.S. Cl.		(2011.01)	4,456,925	Α	6/1984	Skerlos et al.
(02)		H04N 2	1/84 (2013.01); H04N 21/8543	4,466,017 4,477,830			Banker Lindman et al.
); <i>H04N 2005/44565</i> (2013.01)	4,488,179	Α	12/1984	Kruger et al.
(= c)		-		4,495,654 4,496,171		1/1985	Deiss Cherry
(56)		Referen	ces Cited	4,496,976	Α	1/1985	Swanson et al.
	U.S. I	PATENT	DOCUMENTS	4,510,623 4,521,806			Bonneau et al. Abraham
	2 402 555	1/1050	P. 14	4,523,228			Banker
	3,492,577 A 3,493,674 A		Reiter et al. Houghton	4,527,194		7/1985	
	3,729,581 A	4/1973	Anderson	4,531,020 4,533,910			Wechselberger et al. Sukonick et al.
	3,833,757 A 3,848,193 A		Kirk, Jr. et al. Martin et al.	4,536,791	Α	8/1985	Campbell et al.
	3,891,792 A		Kimura	4,547,804 4,554,584			Greenberg Elam et al.
	3,936,868 A	2/1976 10/1976		4,555,775	Α	11/1985	Pike
	3,987,398 A 3,996,583 A		Hutt et al.	4,566,034 4,567,512			Harger et al. Abraham
	4,004,085 A		Makino et al.	4,573,072			Freeman
	4,016,361 A 4,024,401 A	4/1977 5/1977	Bernstein et al.	4,587,514			Schas et al.
	4,026,555 A	5/1977	Kirschner et al.	4,587,520 4,590,516		5/1986 5/1986	Astie Abraham
	4,031,548 A 4,052,719 A		Kato et al. Hutt et al.	4,595,951	Α	6/1986	Filliman
	4,058,830 A	11/1977	Guinet et al.	4,595,952 4,598,288			Filliman Yarbrough et al.
	4,079,419 A 4,081,753 A	3/1978 3/1978	Siegle et al.	4,602,279	Α	7/1986	Freeman
	4,081,753 A 4,081,754 A		Jackson	4,605,964 4,605,973		8/1986	Chard Von Kohorn
	4,096,524 A	6/1978		4,620,229			Amano et al.
	4,134,127 A 4,139,860 A		Campioni Micic et al.	4,622,545			Atkinson
	4,150,254 A	4/1979	Schussler et al.	4,623,920 4,635,109			Dufresne et al. Comeau
	4,156,850 A 4,161,728 A	5/1979 7/1979	Beyers, Jr. Insam	4,635,121	A	1/1987	Hoffman
	4,162,513 A	7/1979	Beyers, Jr. et al.	4,641,205 4,677,466			Beyers, Jr. Lert, Jr. et al.
	4,170,782 A 4,186,413 A	10/1979	Miller Mortimer	4,685,131	Α	8/1987	Horne
	4,203,130 A		Doumit et al.	4,689,022 4,691,351			Peers et al. Hayashi et al.
	4,205,343 A	5/1980	Barrett Bart et al.	4,694,490		9/1987	Harvey et al.
	4,218,698 A 4,228,543 A	10/1980		4,701,794 4,704,725			Froling et al. Harvey et al.
	4,231,031 A		Crowther et al.	4,706,121		11/1987	
	4,233,628 A 4,249,211 A	11/1980 2/1981	Baba et al.	4,710,971			Nozaki et al.
	4,249,213 A	2/1981	Imaide et al.	4,712,105 4,718,107		12/1987 1/1988	
	4,261,006 A 4,264,924 A		Weintraub et al. Freeman	RE32,632	Ε	3/1988	Atkinson
	4,264,925 A		Freeman et al.	4,742,543 4,745,549	A		Frederiksen Hashimoto
	4,270,145 A 4,271,532 A	5/1981 6/1981		4,748,618	Α	5/1988	Brown et al.
	4,271,332 A 4,276,597 A		Dissly et al.	4,750,036 4,750,213		6/1988 6/1988	Martinez Novak
	4,280,148 A	7/1981		4,751,578			Reiter et al.
	4,283,787 A 4,287,593 A	8/1981 9/1981	Chambers Stover	4,754,326			Kram et al.
	4,288,809 A	9/1981	Yabe	4,768,228 4,772,882		8/1988 9/1988	Clupper et al. Mical
	4,290,142 A 4,305,101 A		Schnee et al. Yarbrough et al.	4,775,935	A	10/1988	Yourick
	4,307,446 A	12/1981	Barton et al.	4,785,408			Britton et al.
	4,329,684 A 4,331,974 A		Monteath et al. Cogswell et al.	4,787,063 4,787,085		11/1988	Muguet et al. Suto et al.
	4,337,480 A	6/1982	Bourassin et al.	4,812,834	Α	3/1989	Wells
	4,337,483 A		Guillou Religemi et al	4,814,883			Perine et al.
	4,344,090 A	0/1982	Belisomi et al.	4,821,102	А	4/1989	Ichikawa et al.

(56)		Referen	ces Cited		5,126,851			Yoshimura et al.
	U.S.	PATENT	DOCUMENTS		5,132,992 5,133,079			Yurt et al. Ballantyne et al.
					5,148,154			Mackay et al.
4,821,2		4/1989			5,151,782 5,151,789		9/1992 9/1992	
4,829,3° 4,829,5		5/1989 5/1989	McCalley et al.		5,155,591		10/1992	
4,829,50					5,155,806	A	10/1992	Hoeber et al.
4,847,60		7/1989	Doyle		5,157,768			Hoeber et al.
4,847,70			Freeman		5,161,023 5,162,905	A A	11/1992	Keenan Itoh et al.
4,857,79 4,857,99		8/1989 8/1989			5,170,388			Endoh et al.
4,862,20	58 A		Campbell et al.		5,172,111			Olivo, Jr.
4,864,4			Eigeldinger et al.		5,177,604 5,179,439			Martinez Hashimoto
4,866,7′ 4,868,86			Seth-Smith et al. Williams, Jr.		5,179,654			Richards et al.
4,873,62			Lane et al.		5,182,640	A	1/1993	Takano
4,882,73			Kaminaga et al.		5,189,630 5,191,423		2/1993 3/1993	Barstow et al. Yoshida
4,884,22 4,888,79			Ingle et al. Olivo, Jr.		5,191,423		3/1993	Wilson et al.
4,890,32			Monslow et al.		5,195,134	A	3/1993	Inoue et al.
4,890,32	21 A		Seth-Smith et al.		5,200,823			Yoneda et al.
4,894,73		1/1990			5,204,897 5,206,722		4/1993	Wyman Kwan
4,899,13 4,905,09			Beard et al. Pocock et al.		5,210,611		5/1993	Yee et al.
4,908,70		3/1990	Kinghorn		5,212,553		5/1993	Maruoka
4,908,7		3/1990			5,214,622 5,216,515		5/1993 6/1993	Nemoto et al. Steele et al.
4,908,83 4,914,5			Bennett et al. Duffield		5,220,420		6/1993	Hoarty et al.
4,914,7			Henderson et al.		5,223,924		6/1993	Strubbe
4,930,1		5/1990			5,227,874 5,231,493		7/1993 7/1993	Von Kohorn Apitz
4,930,10 4,931,73		5/1990 6/1990	Vogel Atkinson		5,231,494		7/1993	Wachob
4,935,80			Rowe et al.		RE34,340	E	8/1993	Freeman
4,937,82		6/1990	Boulton		5,233,423			Jernigan et al.
4,937,80			Robert et al.		5,233,654 5,235,415			Harvey et al. Bonicel et al.
4,939,50 4,943,90			Beard et al. Waechter et al.		5,236,199			Thompson, Jr.
4,959,7	19 A	9/1990	Strubbe et al.		5,237,411			Fink et al.
4,959,72			Duffield et al.		5,237,417 5,237,418			Hayashi et al. Kaneko
4,963,99 4,977,4		10/1990 12/1990			5,239,540	A	8/1993	
4,982,43			Frezza et al.		5,245,420		9/1993	Harney et al.
4,987,43			Johnson et al.		5,247,347 5,247,364		9/1993	Litteral et al. Banker et al.
4,991,0 4,991,0			Johnson et al. Yoshino		5,247,580			Kimura et al.
4,992,94	40 A		Dworkin		5,253,066		10/1993	Vogel
4,994,90			Kuban et al.		5,253,067 5,260,778		10/1993 11/1993	Chaney et al. Kauffman et al.
4,994,90 4,995,0°			Graves et al. Monslow et al.		5,260,778		11/1993	Takano et al.
4,996,6		2/1991			5,260,999		11/1993	Wyman
4,998,1			Kim et al.		5,262,860 5,283,639		11/1993	Fitzpatrick et al. Esch et al.
5,001,55 5,003,59			Johnson et al. Kauffman et al.		5,283,819			Glick et al.
5,008,8	53 A		Bly et al.		5,285,272	A		Bradley et al.
5,014,12	25 A	5/1991	Pocock et al.		5,293,357 5,301,028			Hallenbeck Banker et al.
5,027,40 5,036,3			Baji et al. Barillari et al.		5,307,173			Yuen et al.
5,038,2			Hallenbeck		5,311,423	A	5/1994	
5,045,94	47 A	9/1991	Beery		5,313,282 5,317,403	A		Hayashi Keenan
5,047,86 5,053,83		9/1991 10/1991	Strubbe et al.		5,317,403		6/1994	
5,058,10			Banker et al.		5,319,707	Α	6/1994	Wasilewski et al.
5,062,00		10/1991	Kolnick		5,323,234 5,323,240	A		Kawasaki
5,068,73 5,072,4		11/1991	Beery Henderson, Jr. et al		5,325,240		6/1994 6/1994	Amano et al. Rhee
5,075,7			Hashimoto	•	5,325,423		6/1994	Lewis
5,077,60	07 A		Johnson et al.		5,335,277			Harvey et al.
5,083,80			Lockton		5,337,155 5,343,239			Cornelis Lappington et al.
5,090,0 ₄ 5,091,73		2/1992 2/1992	Chen Canfield et al.		5,343,300			Hennig
5,091,93	36 A	2/1992	Katznelson et al.		5,345,594	A	9/1994	Tsuda
5,093,92			Bevins, Jr.		5,347,167		9/1994	
5,099,3 5,103,3		3/1992 4/1992	Esch et al. Keenan		5,347,632 5,351,075			Filepp et al. Herz et al.
5,105,1			Pirani et al.		5,353,121	A	10/1994	
5,119,13	88 A	6/1992	McCalley et al.		5,355,480	A	10/1994	Smith et al.
5,121,4		6/1992			5,357,276		10/1994	Banker et al.
5,123,0	10 A	6/1992	Levine		5,359,367	A	10/1994	Stockill et al.

(56)	Refere	ices Cited	5,561,471			Kim et al.
U.S	S. PATENT	DOCUMENTS	5,561,709 5,563,648			Remillard Menand et al.
			5,563,665		10/1996	
5,359,601 A		Wasilewski et al.	5,570,295 5,572,442			Isenberg et al. Schulhof et al.
5,365,282 A 5,367,316 A	11/1994 11/1994	Levine Ikezaki	5,574,962			Fardeau et al.
5,367,330 A		Haave et al.	5,576,755			Davis et al.
5,367,571 A		Bowen et al.	5,576,765 5,579,055			Cheney et al. Hamilton et al.
5,373,288 A 5,374,951 A	12/1994 12/1994		5,581,479			McLaughlin et al.
5,377,317 A		Bates et al.	5,582,364	A	12/1996	Trulin et al.
5,377,319 A		Kitahara et al.	5,583,560 5,583,563			Florin et al. Wanderscheid et al.
5,382,983 A 5,384,910 A		Kwoh et al. Torres	5,583,937			Ullrich et al.
5,387,945 A		Takeuchi	5,585,838	A	12/1996	
5,396,546 A		Remillard	5,585,865 5,585,866			Amano et al. Miller et al.
5,398,074 A 5,404,393 A		Duffield et al. Remillard	5,589,892			Knee et al.
5,410,326 A		Goldstein	5,592,551	Α	1/1997	Lett et al.
5,410,343 A		Coddington et al.	5,594,490 5,594,509			Dawson et al. Florin et al.
5,410,344 A 5,410,367 A		Graves et al. Zahavi et al.	5,594,661			Bruner et al.
5,412,720 A		Hoarty	5,596,373	A	1/1997	White et al.
5,414,756 A	5/1995	Levine	5,600,364 5,600,366			Hendricks et al. Schulman
5,416,508 A 5,424,770 A		Sakuma et al. Schmelzer et al.	5,600,573			Hendricks et al.
5,425,101 A		Woo et al.	5,602,582	A	2/1997	Wanderscheid et al.
5,432,561 A		Strubbe	5,602,596			Claussen et al.
5,434,626 A 5,436,676 A		Hayashi et al. Pint et al.	5,602,597 5,606,374			Bertram Bertram
5,440,623 A		Moore et al.	5,610,653	A	3/1997	Abecassis
5,440,632 A		Bacon et al.	5,617,565		4/1997	Augenbraun et al.
5,444,499 A		Saitoh et al. Wilkins	5,619,247 5,619,249		4/1997 4/1997	Billock et al.
5,446,919 A 5,452,012 A		Saitoh	5,619,274	A	4/1997	Roop et al.
5,459,522 A	10/1995	Pint	5,621,456			Florin et al.
5,461,415 A		Wolf et al.	5,623,613 5,627,940			Rowe et al. Rohra et al.
5,465,113 A 5,465,385 A	11/1995 11/1995	Ohga et al.	5,627,960	A	5/1997	Clifford et al.
5,469,206 A	11/1995	Strubbe et al.	5,629,733			Youman et al.
5,477,262 A		Banker et al.	5,630,119 5,631,995			Aristides et al. Weissensteiner et al.
5,479,266 A 5,479,268 A		Young et al. Young et al.	5,633,683	A	5/1997	Rosengren et al.
5,479,497 A	12/1995	Kovarik	5,635,978			Alten et al.
5,481,296 A 5,483,278 A		Cragun et al. Strubbe et al.	5,635,979 5,635,989			Kostreski et al. Rothmuller
5,485,197 A		Hoarty	5,636,346	A	6/1997	Saxe
5,485,219 A	1/1996		5,640,501		6/1997	Turpin Scharmer
5,485,221 A 5,488,409 A		Banker et al. Yuen et al.	5,640,577 5,642,153			Chaney et al.
5,489,103 A		Okamoto et al.	5,648,813	A	7/1997	Tanigawa et al.
5,495,295 A	2/1996		5,648,824 5,650,826		7/1997 7/1997	Dunn et al.
5,502,504 A 5,515,098 A		Marshall et al. Carles	5,650,831			Farwell
5,515,106 A		Chaney et al.	5,652,613	A	7/1997	Lazarus et al.
5,515,511 A		Nguyen et al.	5,652,615 5,654,748			Bryant et al. Matthews, III
5,517,254 A 5,523,794 A		Monta et al. Mankovitz et al.	5,654,886			Zereski, Jr. et al.
5,523,796 A		Marshall et al.	5,657,072			Aristides et al.
5,524,195 A		Clanton, III et al.	5,657,091 5,659,350			Bertram Hendricks et al.
5,526,034 A 5,528,304 A		Hoarty et al. Cherrick et al.	5,659,366			Kerman
5,532,735 A		Blahut et al.	5,661,516		8/1997	Carles
5,532,754 A		Young et al.	5,661,517 5,663,757		8/1997 9/1997	Budow et al. Morales
5,534,911 A 5,537,141 A		Levitan Harper et al.	5,664,111			Nahan et al.
5,539,822 A	7/1996		5,666,293		9/1997	
5,541,662 A		Adams et al.	5,666,498 5,666,645		9/1997	Amro Thomas et al.
5,541,738 A 5,550,576 A		Mankovitz Klosterman	5,668,591			Shintani
5,552,833 A	9/1996	Henmi et al.	5,671,276	A	9/1997	Eyer et al.
5,553,221 A		Reimer et al.	5,671,411			Watts et al.
5,557,338 A 5,557,721 A		Maze et al. Fite et al.	5,675,390 5,675,752			Schindler et al. Scott et al.
5,559,548 A		Davis et al.	5,677,708			Matthews, III et al.
5,559,549 A	9/1996	Hendricks et al.	5,677,981	Α	10/1997	Kato et al.
5,559,550 A		Mankovitz	5,682,195			Hendricks et al.
5,559,942 A	9/1996	Gough et al.	5,682,206	А	10/199/	Wehmeyer et al.

(56)	Referen	ices Cited		284 A		Karlton et al.
HC	DATENIT	DOCLIMENTS		154 A 167 A	9/1998	van Cruyningen
0.5.	PATENT	DOCUMENTS		235 A		Bedard
5 604 505 A	11/1007	V1		763 A		Lawler et al.
5,684,525 A 5,686,954 A		Klosterman Yoshinobu et al.		804 A		Laursen et al.
5,687,331 A		Volk et al.		806 A		McArthur
5,689,648 A		Diaz et al.	5,808,	608 A		Young et al.
5,689,666 A		Berquist et al.		694 A	9/1998	Usui et al.
5,692,214 A	11/1997			204 A		Young et al.
5,694,163 A	12/1997	Harrison		214 A		Nureki et al.
5,694,176 A		Bruette et al.		205 A		Milnes et al.
5,694,381 A	12/1997			145 A 671 A		Matthews, III Morrison
5,696,905 A		Reimer et al.		438 A		Howe et al.
5,699,107 A		Lawler et al. Rzeszewski et al.		439 A		Nagasaka et al.
5,699,125 A 5,708,478 A		Tognazzini		441 A		Throckmorton et al.
5,710,601 A		Marshall et al.		511 A	10/1998	Farry et al.
5,710,815 A		Ming et al.		541 A		Matsuura et al.
5,710,884 A		Dedrick		935 A	10/1998	
5,715,314 A	2/1998	Payne et al.		019 A	10/1998	
5,715,399 A	2/1998			156 A		Belmont
5,715,515 A		Akins, III et al.		284 A 285 A		Farber et al. Damico et al.
5,717,452 A		Janin et al.		123 A		Davis et al.
5,717,923 A		Dedrick Dunn et al.		402 A		Collings
5,721,829 A 5,722,041 A		Freadman		420 A		Marshall et al.
5,724,103 A		Batchelor		839 A	10/1998	Moncreiff
5,724,521 A		Dedrick		945 A		Klosterman
5,724,525 A		Beyers, II et al.		068 A		Brenner et al.
5,724,567 A	3/1998	Rose et al.		223 A		Hara et al.
5,727,060 A	3/1998			468 A		Guy et al.
5,727,163 A	3/1998			717 A 314 A		Karlton et al. Neel et al.
5,731,844 A		Rauch et al.		383 A		Chimoto et al.
5,734,444 A 5,734,853 A		Yoshinobu Hendricks et al.		010 A		Jain et al.
5,734,893 A		Li et al.		199 A		Miller et al.
5,737,028 A		Bertram et al.	5,844,	552 A	12/1998	Gaughan et al.
5,737,030 A		Hong et al.		620 A		Coleman et al.
5,740,549 A	4/1998	Reilly et al.		352 A		Dougherty et al.
5,751,282 A		Girard et al.		396 A 397 A	12/1998	Marsh et al.
5,752,080 A	5/1998			218 A		LaJoie et al 725/45
5,752,159 A 5,752,160 A	5/1998	Faust et al.		437 A		Wugofski et al.
5,754,258 A		Hanaya et al.		881 A		Freeman et al.
5,754,771 A		Epperson et al.	5,861,	906 A		Dunn et al.
5,754,939 A		Herz et al.		292 A		Kubota et al.
5,757,417 A	5/1998	Aras et al.		226 A		Wehmeyer et al.
5,758,257 A		Herz et al.		227 A 588 A		Yamaguchi Aras et al.
5,758,259 A		Lawler		500 A 660 A		Walsh et al.
5,760,821 A 5,761,372 A		Ellis et al.		985 A		Matthews, III
5,761,601 A		Yoshinobu et al. Nemirofsky et al.		108 A	2/1999	Hoffberg et al.
5,761,606 A		Wolzien	5,877,	906 A	3/1999	Nagasawa et al.
5,768,528 A		Stumm		768 A	3/1999	Lemmons et al.
5,768,539 A	6/1998	Metz et al.		677 A		Hofmann
5,774,170 A		Hite et al.		691 A		Furuya et al.
5,774,357 A		Hoffberg et al.		731 A 950 A		Ebisawa Kuzma
5,774,534 A		Mayer Hidary et al.		498 A		Marshall et al.
5,774,664 A 5,774,887 A		Wolff et al.		535 A		Allen et al.
5,778,181 A		Hidary et al.	5,892,	767 A		Bell et al.
5,778,182 A		Cathey et al.		905 A	5/1999	Shoff et al.
5,778,372 A		Cordell et al.		314 A	5/1999	
5,781,226 A		Sheehan		545 A	5/1999	Sabourin et al.
5,781,245 A		Van Der Weij et al.		816 A 497 A		Broadwin et al. Vaughan et al.
5,781,246 A		Alten et al.		322 A		Kelly et al.
5,784,258 A	7/1998 8/1998			323 A		Lawler et al.
5,790,201 A 5,790,202 A		Kummer et al.		366 A		Farmer et al.
5,790,426 A		Robinson		712 A	6/1999	
5,790,753 A		Krishnamoorthy et al.		746 A		Matthews, III et al.
5,793,438 A	8/1998	Bedard		481 A		Rzeszewski et al.
5,793,964 A		Rogers et al.		830 A		Chen et al.
5,793,972 A	8/1998			010 A		Appleman et al.
5,798,785 A		Hendricks et al.		014 A		Robinson
5,801,747 A		Bedard Crump et al		700 A	7/1999	Goodhand et al.
5,801,785 A 5,801,787 A		Crump et al. Schein et al.		848 A 849 A	7/1999	Goodhand et al. Kikinis
5,001,/8/ A	9/1998	SCHEIII EL AL	3,929,	042 A	1/1999	EXECUTE

(56) Refere	nces Cited	6,104,705 A		Ismail et al.
HC DATENY	Γ DOCUMENTS	6,108,042 A 6,111,614 A		Adams et al. Mugura et al.
U.S. PATEN	I DOCUMENTS	6,112,186 A		Bergh et al.
5,929,850 A 7/1999	Broadwin et al.	6,115,057 A		Kwoh et al.
	Otsuki et al.	6,118,492 A		Milnes et al.
	Hashimoto et al.	6,119,098 A		Guyot et al.
5,936,679 A 8/1999	Kasahara et al.	6,119,101 A		Peckover
	Davis et al.	6,122,011 A		Dias et al. Yaginumav et al.
	Klosterman et al.	6,125,230 A 6,125,259 A *		Perlman 725/28
	Balaban et al. Williams et al.			Schein et al.
	Rogers et al.		10/2000	Venkatraman et al.
	Young et al.			Chor et al.
5,951,642 A 9/1999	Onoe et al.			Terasawa et al.
	Blonstein et al.			Schein et al. Cheng et al.
	Manduley Schein et al.	, ,		Yuen et al.
5,960,411 A 9/1999				Williams et al.
5,969,748 A 10/1999				Hanafee et al.
5,973,683 A 10/1999	Cragun et al.			Eyer et al.
	Yuen et al.		12/2000	Thompson et al.
	Williams et al. Eyer et al		12/2000	
5,982,445 A * 11/1999 5,983,236 A 11/1999	Yager et al 348/461			Noguchi et al.
	Ellis et al.	6,166,728 A	12/2000	Haman et al.
	Levine	6,169,542 B1		Hooks et al.
	Etheredge	6,172,674 B1		Etheredge
	Hendricks et al.	6,172,677 B1 6,173,271 B1		Stautner et al. Goodman et al.
	Yen et al. Wodarz et al.	6,173,316 B1 *		De Boor et al 709/218
6,002,393 A 12/1999		6,177,931 B1		Alexander et al.
	Schein et al.	6,178,446 B1		Gerszberg et al.
6,005,562 A 12/1999		6,181,335 B1		Hendricks et al.
	White et al.	6,184,877 B1 6,186,443 B1		Dodson et al. Shaffer
	Legall et al. Barrett et al.	6,191,780 B1		Martin et al.
	Slezak	6,202,212 B1		Sturgeon et al.
	Iki et al.	6,208,335 B1		Gordon et al.
6,008,803 A 12/1999		6,209,129 B1		Carr et al.
	Bertram	6,209,130 B1 6,212,553 B1		Rector, Jr. et al. Lee et al.
	Burns Knee et al.	6,216,264 B1		Maze et al.
	Moraes	6,222,530 B1		Segueira
	Knudsen et al.	6,226,442 B1	5/2001	
	Etheredge	6,226,642 B1 * 6,226,793 B1	5/2001	Beranek et al 348/211.13
, ,	Ullman et al. Naimpally	6,239,794 B1		Yuen et al.
	Herz et al.	6,240,555 B1	5/2001	Shoff et al.
6,020,929 A 2/2000		6,253,203 B1		O'Flaherty et al.
6,023,267 A 2/2000		6,256,071 B1	7/2001	
6,025,837 A 2/2000		6,256,785 B1 6,257,268 B1		Klappert et al. Hope et al.
) Koda) Yuen et al.	6,262,721 B1		Tsukidate et al.
	Picco et al.	6,262,722 B1		Allison et al.
6,029,195 A 2/2000		6,263,501 B1		Schein et al.
	Machida et al.	6,263,507 B1		Ahmad et al.
	Bisdikian et al.	6,266,681 B1* 6,268,849 B1		Guthrie
6,049,824 A 4/2000 6,049,831 A 4/2000	Simonin Gardell et al.	6,275,268 B1		Ellis et al.
	Macrae et al.	6,279,157 B1	8/2001	
6,061,060 A 5/2000		6,285,713 B1		Nakaya et al.
6,061,097 A 5/2000	Satterfield	6,286,140 B1	9/2001	
, ,	Berezowski et al.	6,288,716 B1 6,289,346 B1		Humpleman et al. Milewski et al.
) Jacobi et al.) Aaker et al.			Seidman et al.
	Dillon			Kirchhoffer et al.
	Marshall et al.			Cramer et al 379/221.01
6,075,526 A 6/2000	Rothmuller			Barton et al.
6,075,551 A 6/2000				Terakado et al.
	Schein et al.			Yang et al.
	Klosterman et al. Legall et al.		11/2001	Handelman et al. Fries
	Hoffberg et al.			Palmer et al.
6,088,717 A * 7/2000		6,323,911 B1		Schein et al.
, ,	Herz et al.			Bennington et al.
6,091,883 A 7/2000		6,335,963 B1	1/2002	
6,098,065 A 8/2000		6,341,195 B1 6,341,374 B2		Mankovitz et al.
6,101,488 A * 8/2000	Hayashi et al 706/45	0,341,3/4 B2	1/2002	Scheintal

(56)			Referen	ces Cited	7,266,833			Ward, III et al.
		U.S.	PATENT	DOCUMENTS	7,293,276 7,328,450 7,392,532	B2	2/2008	Phillips et al. Macrae et al. White et al.
,	6,342,926	R1	1/2002	Hanafee et al.	7,480,929			Klosterman et al.
	6,357,042			Srinivasan et al.	7,571,457	B1		Hendricks et al.
	6,357,043			Ellis et al.	7,665,109	B2		Matthews et al.
	6,359,636			Schindler et al.	8,010,979 8,112,776			Lemmons et al 725/47 Schein et al.
	6,363,525 6,373,528		3/2002 4/2002	Dougherty et al. Bennington et al.	2001/0001160			Shoff et al.
	6,381,582			Walker et al.	2001/0029610			Corvin et al.
	6,388,714			Schein et al.	2001/0042246			Yuen et al.
	6,389,593			Yamagishi	2001/0047298 2001/0049820		12/2001	Moore et al.
	6,392,710 6,396,546			Gonsalves et al. Alten et al.	2001/004/320		12/2001	
	6,400,407			Zigmond et al.	2002/0042913	A1	4/2002	Ellis et al.
(6,405,371	B1	6/2002	Oosterhout et al.	2002/0042914			Walker et al.
	6,408,437			Hendricks et al.	2002/0042918			Townsend et al.
	6,411,308 6,411,696			Blonstein et al. Iverson et al.	2002/0049973 2002/0059599			Alten et al. Schein et al.
	6,412,110			Schein et al.	2002/0059602			Macrae et al.
(6,418,556	B1	7/2002	Bennington et al.	2002/0073424		6/2002	Ward, III et al.
	6,421,067			Kamen et al.	2002/0083439			Eldering
	6,430,175 6,437,836			Echols et al 370/352 Huang et al.	2002/0092017			Klosterman et al.
	6,446,261		9/2002		2002/0112249 2002/0120933			Hendricks et al. Knudson et al.
	6,453,471			Klosterman	2002/0120939			Shintani et al.
	6,463,585			Hendricks et al. Klosterman et al.	2002/0138840			Schein et al.
	6,469,753 6,470,497			Ellis et al.	2003/0005432			Ellis et al.
	6,477,579			Kunkel et al.	2003/0005445			Schein et al.
	6,477,705			Yuen et al.	2003/0110499 2003/0115602			Knudson et al. Knee et al.
	6,486,920			Arai et al. Beaumont et al	2003/0113002			Klosterman et al.
	6,498,895			Young et al 713/762	2003/0164858			Klosterman et al.
	6,505,348			Knowles et al.	2003/0188310			Klosterman et al.
	6,515,680			Hendricks et al.	2003/0188311			Yuen et al.
	6,539,548 6,545,722			Hendricks et al. Schultheiss et al.	2003/0196201 2003/0196203			Schein et al. Ellis et al.
	6,546,556			Kataoka et al.	2003/0196203			Ellis et al.
	6,564,378			Satterfield et al.	2003/0201017			Macrae et al.
	6,564,379			Knudson et al.	2003/0208758	A1	11/2003	Schein et al.
	6,574,424 6,588,013			Dimitri et al. Lumley et al.	2004/0003407			Hanafee et al.
	6,600,364			Liang et al.	2004/0049787 2004/0078809		3/2004 4/2004	Maissel et al.
	6,600,503		7/2003	Stautner et al.	2004/0078809			Lemmons et al.
	6,606,128			Hanafee et al. Kamada	2004/0111742			Hendricks et al.
(6,622,306 6,631,523	B1		Matthews, III et al.	2004/0139465			Matthews et al.
(6,651,251	BI		Shoff et al.	2004/0168189			Reynolds et al.
	6,660,503		12/2003		2004/0194131 2004/0194138			Ellis et al. Boylan, III et al.
	6,661,468 6,665,869			Alten et al. Ellis et al.	2004/0194138			Schein et al.
	6,687,906			Yuen et al.	2004/0221310			Herrington et al.
(6,698,020	B1	2/2004	Zigmond et al.	2005/0015815		1/2005	Shoff et al.
	6,732,369		5/2004		2005/0097622			Zigmond et al.
	6,738,978 6,742,183			Hendricks et al. Reynolds et al.	2005/0138660 2005/0155056			Boyer et al. Knee et al.
	6,751,800			Fukuda et al.	2005/0153030			Hendricks
	6,754,904			Cooper et al.	2005/0198668			Yuen et al.
	6,756,997 6,757,906			Ward, III et al.	2005/0204382	A1	9/2005	
	6,799,326			Look et al. Boylan, III et al.	2005/0204388		9/2005	Knudson et al.
(6,799,327	B1		Reynolds et al.	2005/0216936 2005/0229214			Knudson et al. Young et al.
	6,828,993			Hendricks et al.	2005/0229214			Schein et al.
	6,865,746 6,868,551			Herrington et al. Lawler et al.	2005/0235320			Maze et al.
	6,898,762			Ellis et al.	2005/0244138	A1		O'Connor et al.
(6,928,652	B1	8/2005	Goldman	2005/0278741			Robarts et al.
	6,938,208			Reichardt	2005/0283796			Flickinger Daniels
	6,973,669 6,983,478		1/2005	Daniels Grauch et al.	2006/0037044 2006/0248555			Eldering
	7,003,792		2/2006		2007/0271582			Ellis et al.
•	7,028,326	B1	4/2006	Westlake et al.	2008/0005130	A1*	1/2008	Logan et al 707/10
	7,058,635			Shah-Nazaroff et al.	2008/0178221			Schein et al.
	7,069,576 7,165,098			Knudson et al. Boyer et al.	2008/0184308 2008/0184312			Herrington et al. Schein et al.
	7,165,098 7,185,355			Ellis et al.	2008/0184312			Ellis et al.
	7,183,333			Young et al.	2008/0235725			Hendricks
	•			-				

US 9,172,987 B2

Page 8

(56)	Refere	nces Cited		EP EP	0944253 0963119	9/1999 12/1999
	U.S. PATEN	Γ DOCUMENTS]	EP EP	0988876 1095504	3/2000 5/2001
2008/028	8980 A1 11/2008	Schein et al.]	EP	0 725 539	7/2002
2009/007	0817 A1 3/2009	Ellis et al.		EP FR	0 945 003 2662895	8/2003 12/1991
	FOREIGN PATE	ENT DOCUMENTS		GB	1554411	10/1979
				GB GB	2034995 2126002	6/1980 3/1984
CA CA	1030505 1187197	5/1978 5/1985		GB GB	2185670 2256546	7/1987 12/1992
CA CA	1188811 1196082	6/1985 10/1985	(GB	2256549	12/1992
CA	1200911	2/1986		GB JP	2309134 55-28691	7/1997 2/1980
CA CA	2151458 2164608	6/1994 12/1994		JP JP	58-137334 58-196738	8/1983 11/1983
CA	2312326	6/1999		JР	58-210776	12/1983
CN DE	1567986 2918846	1/2005 11/1980		JP JP	59-15348 59-141878	1/1984 8/1984
DE	3246225	6/1984		JP	60-61935	4/1985
DE DE	3337204 3621263	4/1985 1/1988		JP JP	61-050470 61-074476	3/1986 4/1986
DE DE	3640436 3909334	6/1988 9/1990		JР	61-105642	5/1986
DE	4201031	7/1993		JP JP	62-060370 62-060384	3/1987 3/1987
DE DE	4217246 4240187	12/1993 6/1994		JP JP	63-234679 1018380	9/1988 1/1989
DE	4407701	9/1995		JР	1183380	7/1989
DE DE	4440419 19531121	5/1996 2/1997		JP JP	1-307944 2-048879	12/1989 2/1990
DE DE	19740079 19931046	3/1999 1/2001		JР	03-21184	1/1991
EP	0055674	7/1982		JP JP	3-021184 03063990	1/1991 3/1991
EP EP	0239884 0396062	10/1987 11/1990		JP JP	04-079053 04-227380	3/1992 8/1992
EP	0401930	12/1990		JР	05-183826	7/1993
EP EP	0408892 0420123	1/1991 4/1991		JP JP	5-324450 06-021907	12/1993 1/1994
EP EP	0424648 0444496	5/1991 9/1991		JР	06-38165	2/1994
EP	0447968	9/1991		JP JP	06-504165 06-243539	5/1994 9/1994
EP EP	0532322 0550911	3/1993 7/1993		JP JP	6-319874 07-020254	11/1994 1/1995
EP	0560593	9/1993		JР	07-050259	2/1995
EP EP	0566454 0 276 425	10/1993 11/1993		JP JP	07-59072 7-66784	3/1995 3/1995
EP EP	0572090 0 617 563	12/1993 9/1994		JР	7-73124	3/1995
EP	0 624 040	11/1994		JP JP	07-076592 07-502629	3/1995 3/1995
EP EP	0682452 0 705 036	11/1995 4/1996		JP JP	07-123326 7-131771	5/1995 5/1995
EP	0 721 253	7/1996		JP	07-135621	5/1995
EP EP	0 723 369 0 742 669	7/1996 11/1996		JP JP	07-147657 07-160732	6/1995 6/1995
EP EP	0752767 0753964	1/1997 1/1997		JP	07-193762 07-288759	7/1995
EP	0762751	3/1997		JP JP	H07509817	10/1995 10/1995
EP EP	0 774 866 0772360	5/1997 5/1997		JP JP	07-321748 08-32528	12/1995 2/1996
EP	0775417	5/1997		JР	08-32538	2/1996
EP EP	0784405 0 805 594	7/1997 11/1997		JP JP	08-125497 08-506941	5/1996 7/1996
EP EP	0 823 798 0822718	2/1998 2/1998		JР	08-251122	9/1996
EP	0827340	3/1998		JP JP	09-037151 9-37168	2/1997 2/1997
EP EP	0 834 798 0 836 321	4/1998 4/1998		JP JP	09-037172 09-102827	2/1997 4/1997
EP	0 837 599	4/1998		JР	10-143340	5/1998
EP EP	0848554 0849948	6/1998 6/1998		JP JP	10-143349 10-512420	5/1998 11/1998
EP	0851681	7/1998		JР	2838892	12/1998
EP EP	0852442 0854645	7/1998 7/1998		JP JP	2001-213595 2002-279969	8/2001 9/2002
EP	0854654	7/1998		JР	3965462	8/2007
EP EP	0880856 0905985	12/1998 3/1999		MX WO	9800004 WO 86/01359	11/1998 2/1986
EP	0924927	6/1999	•	WO	WO 86/01962	3/1986
EP	0935393	8/1999	,	WO	WO 87/03766	6/1987

(56)	Refere	nces Cited	WO	WO 96/38962	12/1996
()			WO	WO 96/41471	12/1996
	FOREIGN PATE	ENT DOCUMENTS	WO	WO 96/41472	12/1996
			WO	WO 96/41477	12/1996
WO	WO 88/04057	6/1988	WO	WO 96/41478	12/1996
WO	WO 88/04507	6/1988	WO	WO 97/02702	1/1997
WO	WO 89/02682	3/1989	WO	WO 97/04595	2/1997
WO	WO 89/03085	4/1989	WO	WO 97/07656	3/1997
WO	WO 89/12370	12/1989	WO WO	WO 97/13368 WO 97/17774	4/1997 5/1997
WO	WO 90/01243	2/1990	WO	WO 97/18675	5/1997
WO	WO 90/07844	7/1990	WO	WO 97/26612	7/1997
WO	WO 90/15507	12/1990	WO	WO 97/20012 WO 97/31480	8/1997
WO	WO 91/00670	1/1991	wo	WO 97/41673	11/1997
WO WO	WO 91/18476 WO 92/04801	11/1991 3/1992	WO	WO 97/42763	11/1997
WO	WO 93/04473	3/1992	WO	WO 97/45786	12/1997
WO	WO 93/05452	3/1993	WO	WO 97/46943	12/1997
WO	WO 93/06692	4/1993	WO	WO 97/47106	12/1997
WO	WO 93/11638	6/1993	WO	WO 97/47143	12/1997
WO	WO 93/11639	6/1993	WO	WO 97/48230	12/1997
WO	WO 93/11640	6/1993	WO	WO 97/49237	12/1997
WO	WO 93/22877	11/1993	WO	WO 97/49241	12/1997
WO	WO 93/23957	11/1993	WO	WO 97/49242	12/1997
WO	WO 94/13096	6/1994	WO	WO 97/50251	12/1997
WO	WO 94/13107	6/1994	WO WO	WO 98/01825 WO 98/06219	1/1998 2/1998
WO	WO 94/14281	6/1994	WO	WO 98/10589	3/1998
WO	WO 94/14282	6/1994	wo	WO 98/16062	4/1998
WO	WO 94/14283	6/1994	WO	WO 98/17063	4/1998
WO	WO 94/14284 WO 94/17630	6/1994 8/1994	WO	WO 98/17064	4/1998
WO WO	WO 94/17633 WO 94/17633	8/1994 8/1994	WO	WO 98/20675	5/1998
WO	WO 94/17033 WO 94/19881	9/1994	WO	WO 98/21664	5/1998
WO	WO 94/19909	9/1994	WO	WO 98/21877	5/1998
WO	WO 94/21085	9/1994	WO	WO 98/23059	5/1998
WO	WO 94/23383	10/1994	WO	WO 98/26569	6/1998
WO	WO 94/24826	10/1994	WO	WO 98/26584	6/1998
WO	WO 94/29811	12/1994	WO	WO 98/27723	6/1998
WO	WO 94/29840	12/1994	WO	WO 98/28906	7/1998
WO	WO 94/30008	12/1994	WO	WO 98/31148	7/1998
WO	WO 95/01056	1/1995	WO	WO 98/41020	9/1998
WO	WO 95/01058	1/1995	WO	WO 98/43183	10/1998
WO	WO 95/01059	1/1995	WO WO	WO 98/47279 WO 98/48566	10/1998 10/1998
WO	WO 95/06389	3/1995	WO	WO 98/56172	12/1998
WO	WO 95/07003	3/1995	wo	WO 98/56173	12/1998
WO WO	WO 95/10910 WO 95/15649	4/1995 6/1995	wo	WO 99/01984	1/1999
WO	WO 95/15657	6/1995	WO	WO 99/04561	1/1999
WO	WO 95/15658	6/1995	WO	WO 99/07142	2/1999
WO	WO 95/16568	6/1995	WO	WO 99/14947	3/1999
WO	WO 95/19092	7/1995	WO	WO 99/18722	4/1999
WO	WO 95/26608	10/1995	WO	WO 99/29109	6/1999
WO	WO 95/28055	10/1995	WO	WO 99/30491	6/1999
WO	WO 95/28799	10/1995	WO	WO 99/31480	6/1999
WO	WO 95/30961	11/1995	WO	WO 99/45700	9/1999
WO	WO 95/31069	11/1995	WO	WO 99/45701	9/1999
WO	WO 95/32583	11/1995	WO WO	WO 99/45702 WO 99/52285	9/1999 10/1999
WO	WO 95/32585	11/1995	WO	WO 99/52285 WO 99/56466	10/1999
WO	WO 95/32587	11/1995	WO	WO 99/56473	11/1999
WO	WO 96/07270	3/1996	wo	WO 99/60783	11/1999
WO WO	WO 96/08109 WO 96/08113	3/1996 3/1996	WO	WO 99/60789	11/1999
WO	WO 96/08113 WO 96/09721	3/1996	WO	WO 00/04706	1/2000
wo	WO 96/13013	5/1996	WO	WO 00/04708	1/2000
wo	WO 96/13932	5/1996	WO	WO 00/05889	2/2000
wo	WO 96/13935	5/1996	WO	WO 00/11865	3/2000
WO	WO 96/17467	6/1996	WO	WO 00/13415	3/2000
WO	WO 96/17473	6/1996	WO	WO 00/16548	3/2000
WO	WO 96/21990	7/1996	WO	WO 00/27122	5/2000
WO	WO-9620555	7/1996	WO	WO 00/28734	5/2000
WO	WO 96/26605	8/1996	WO	WO 00/33160	6/2000
WO	WO 96/27270	9/1996	WO	WO 00/33224	6/2000
WO	WO 96/27982	9/1996	WO	WO 00/33560	6/2000
WO	WO 96/27989	9/1996	WO	WO 00/33573	6/2000
WO	WO 96/31980	10/1996	WO	WO 00/49801	8/2000
WO	WO 96/34467	10/1996	WO	WO 00/79798	12/2000
WO	WO 96/34486	10/1996	WO	WO 01/01677	1/2001
WO	WO 96/34491	10/1996	WO	WO 01/06784	1/2001
WO	WO 96/37996	11/1996	WO	WO 01/15438	3/2001
WO	WO 96/38799	12/1996	WO	WO 01/35662	5/2001

(56) References Cited FOREIGN PATENT DOCUMENTS WO WO 01/89213 11/2001 WO WO 02/31731 4/2002 WO 02/084992 10/2002 OTHER PUBLICATIONS

"A Framework for Interactive Television Based on Internet Standards." Backer et al.

"BBC Online—Schedules" web page. This web page is located at http://www.bbc.co.uk/schedules/ (as printed from the Internet on Oct. 19, 1999 and being dated as early as May 24, 1997).

"Dial M for Movie," Periodical Funkschau, vol. 11/1994, pp. 78-79 (with full translation),.

"Dialing the printed page" ITT in Europe Profile, 11/Spring 1977. "Growing US interest in the Impact of viewdata," Computing Weekly, Jul. 20, 1978.

"Open TV für Interaktives Fernsehen: Trend and Technology," Periodical RFE, vol. 9/95, p. 100 (with full English translation).

"Teletext presents the alternative view," Financial Times, Oct. 24, 1977.

"Three men on a Viewdata bike," The Economist, Mar. 25, 1978. "UVSG Offers System-Specific Web Site Development for OPS," press release of United Video Satellite Group, Apr. 12, 1996.

"UVSG Teams With Microsoft on Internet Information Server," press release of United Video Satellite Group, Feb. 22, 1996.

"Viewdata and its potential impact in the USA: Final Report/vol. one. The UK Experience," Link and Butler Cox & Partners Limited, Oct. 1978

"Viewdata moves in US but GEC may lose out," Computing Weekly, Jan. 25, 1978.

"Viewdata Service —Terminal Specification," British Post Office, Issue 5, Aug. 1978.

"Web TV and Its Consumer Electronics Licensees Debut First Internet Television Network and Set-Top Box," Jul. 10, 1996 http://webtv/home/HTML/home.license.html>.

Armstrong, Larry, "Channel-Surfing's next wave: Henry Yuen's interactive TV guide takes on TCI and Viacom," BusinessWeek, Jul. 31, 1995.

Arnold, William F., "Britain to get wired city—via telephone," Electronics. Mar. 4, 1976, at 76.

Blahut et al., "Interactive eievision," Proceedings of the IEEE, Jul. 1995.

Boyd-Merritt, Rick, "Television wires two-way video," Electronic Engineering Times, Apr. 25, 1994.

Brugliera, Vito, "Digital On-Screen Display: A New Technology for the Consumer Interface" (Jun. 11, 1993).

Day, Rebecca, "The Great PC/TV Debate," OEM Magazine, Jul. 1, 1996.

DirecTv Plus2 System, RCA, Thompson Consumer Electronics, Inc.

DiRosa, S., "BIGSURF Netguide," Jul. 1995, vol. 3.1 (Sections 18, 21, and 28—renumbered as pp. 1-27).

Eitz, Gerhard, "Zukünftige Informations- Und Datenangebote Beim Digitalen Femsehen—EPG Und "Lesezeichen"," Rundfunktechnische Mitteilungen, vol. 41, pp. 67-72, Jun. 1997. (full translation attached).

Hobbes Internet Timeline, Mar. 22, 2007.

Holland, Gary L., "NAPLPS standard defines graphics and text communications," EDN, Jan. 10, 1985, at 179.

lizuka, Honbashi, Kuwana, The Overview of Internet TV Guide Japan, Building Internet TV Guide Service 1 and 2, the 53rd National Conference Proceedings, Japan, Information Processing Society of Japan, Sep. 6, 1996 p, 3-227 to 230 (partial translation).

Instruction Manual *Using StarSight 2*, StarSight Telecast, Inc., 1994. Kai et al., Development of a Simulation System for Integrated Services Television, Report from Information Processing Society of Japan, Japan, Sep. 13, 1996, vol. 96, No. 90 p. 13-20. (partial translation).

Keith Lynch's timeline of net related terms and concepts, Mar. 22, 2007.

Large, Peter, "Throw away the books—Viewdata's coming," Guardian, Jan. 10, 1978.

Large, Peter, "Viewdata, the invention that brings boundless advice and information to the home, also sets a test for the Post Office," Financial Guardian, Jun. 29, 1978.

Leftwich, Jim & Schein, Steve, StarSight interactive Television Program Guide, Phase III, Functional/Interactional Architecture Specification Document, Orbit Interaction, Palo Alto, California.

Leftwich, Jim, Lai, Willy & Schein, Steve, *StarSiaht Interactive Television Program Guide, Phase IV*, Functiona/Interactional Architecture Specification Document, Orbit Interaction, Palo Alto, California, published before Apr. 19, 1995.

LISTS> What's on Tonite TV Listings Internet Article, [Online], Jan. 28, 1995, XP002378869 Retrieved from the Internet: URL: wvvw. scout.wisc.edu/Projects/PastProjects/NH/95-01-31/0018.html> [retrieved on Apr. 28, 2006] *the whole document*.

Little et al., ACM Multimedia 93 Proceedings, A Digital On-Demand Video Service Suporting Content-Based Queries, pp. 427-436, Jul. 1003

Lloyd, John, "Impact of technology," Financial Times, Jul. 1978. Miller, Mathew D., "A Scenario for the Deployment of Interactive Multimedia Cable Television Systems in the United States in the 1990s," IEEE, 1994.

Money, Steve A., "Teletext and Viewdata," Butterworth & Co, Ltd., London, 1979.

Mosley, J.D., "NAPLPS chip sets, though scarce, satisfy limited US videotex demand," EDN, Mar. 21, 1985, at 57.

Neumann, Andreas, "WDR Online Aufbau Und Perspektiven Automatisierter Online-Dienste Im WDR," Rundfunktechnische Mitteilungen, vol. 41, pp. 56-66, Jun. 1997, (full translation).

Owen, Kenneth, "How dial-a-fact is coming closer to home," The Times, Sep. 30, 1977.

Owen, Kenneth, "Why the Post Office is so excited by its plans for a TV screen information service," The Times, Sep. 26, 1976.

Poole, James, "Demand for Viewdata grows," Sunday Times, Feb. 10,

Printout from Google News Archives, Mar. 22, 2007.

Prodigy Launches Interactive TV Listing, Apr. 22, 1994, Public Broadcasting Report.

Qayyum, Hamid, "Using IVDS and VBI for Interactive Television," IEEE, Jun. 10, 1996.

Rajapakshe et al., "Video on demand," (last modified Jun. 1995) http://www.doc.ic.ac.uk/~nd/surprise_95 /journal/vol4/shr/report. html>.

Rath et al., "Set-Top Box Control Software: A Key Component in Digital Video," Philips Journal of Research, vol. 50, No. ½, 1996, at 185

Research Disclosure XP 000599701 "Electronic Program Guide via Internet," ed. by Kenneth Mason, GB# 385, May 1996, p. 276.

Rogers, C., "Telcos vs. Cable TV: The Global View," Sep. 1995, Report/Alternative Carriers, Data Communications, No. 13, New York, pp, 75, 76, 78, 80.

Rosch, Gary D., "New data and information system set for commercial market trial," Telephony, Mar. 20, 1978, at 96.

Ruffler et al., "InfoRadio on Demand, WebTV and digiTaz—Telecommerce Case Studies," May 23, 1996.

Ryan, Margaret, "Interactive TV Takes a Corporate Twist," Electronic Engineering Times, Jul. 10, 1995.

Schauer, Tom: Internet Article, [Online] Sep. 28, 1995, XP002378870, Retrieved from the Internet: URL: www.vision2020. moscow.com/Archives/1995/9509/0058.html> [retrieved on Apr. 28, 2006] "the whole document".

Schmuckler, Eric, "A marriage that's made in cyberspace (television networks pursue links with online information services)," May 16, 1994, Mediaweek, v4, n20, p22 (3).

Sharpless et al., "An advanced home terminal for interactive data communication," Conf. Rec. Int. Conf. Commun. ICC '77, IEEE, Jun. 12-15, 1977, at 19.6-47.

St. John, Sandringham, "Dress rehearsal for the Prestel show," New Scientist, Jun. 1, 1978, at 586.

(56) References Cited

OTHER PUBLICATIONS

Statement in an Examination Report dated Aug. 2, 1999 for a counterpart foreign application filed in New Zealand in which the foreign Examiner alleges that he has used "The Internet to access television listings for BBC World television as far back as mid 1996...".

Stickland, D.C., "It's a common noun," Rhe Economist, Jun. 5, 1978. Stokes, Adrian, "The viewdata age: Power to the People," Computing Weekly, Jan. 1, 1979.

The clickTV television program guide website of TVData of Queensbury, New York, This website is located at www.clicktv.com (as printed from the Internet on Sep. 1, 1998).

The InfoBeat television program guide website of InfoBeat, Inc, This website is located at www.infobeat.com (as printed from the Internet on Dec. 8, 1997).

The television program guide website of Gist Communications, Inc. of New York, New York. This website is located at www.gist.com (as printed from the Internet on Aug. 14, 1997).

The television program guide website of TV Guide Entertainment Network. This website is located at www.tvguide.com (as printed from the Internet on Aug. 14-22, 1997).

TV Guide movie database Internet web pages printed on Aug. 12, 1999 (9 pages).

TV Guide Online Set for Fall, Entertainment Marketing Letter, Aug. 1994.

VideoGuide, Videoguide User's Manual, pp. 1-27.

Whitehorn, Katharine, "Viewdata and you," Observer, Jul. 30, 1978. Wikipedia article on CompuServe, Mar. 22, 2007.

Wittig, H. et al., intelligent Media Agents in interactive Television Systems Proceedings of the International Conference on Multimedia Computing and Systems, Los Alamitos, CA, US, May 15, 1995-May 18, 1995, pp. 182-189, XP00603484 p. 183, left hand column, paragraph 2, p. 184, right-hand column, paragraph 2 figure 4.

Yoshida. Junko, "Interactive TV a Blur," Electronic Engineering Times, Jan. 30, 1995.

U.S. Appl. No. 60/022,826, filed Jul. 26, 1996, Schein et al.

U.S. Appl. No. 60/015,648, filed Apr. 19, 1996, Klosterman et al.

U.S. Appl. No. 08/987,740, filed Dec. 9, 1997, Boyer et al.

U.S. Appl. No. 09/330,793, filed Jun. 11, 1999, Boyer et al.

U.S. Appl. No. 09/262,658, filed Mar. 3, 1999, Rosenthal et al.

U.S. Appl. No. 09/375,901, filed Aug. 17, 1999, Knudson.

U.S. Appl. No. 09/410,332, filed Oct. 1, 1999, Knudson et al. U.S. Appl. No. 09/357,941, filed Jul. 16, 1999, Knudson et al.

U.S. Appl. No. 09/604,470, filed Jun. 26, 2000, Ellis et al.

"'Duck Tales,' (1987)[TV Series 1987-1990]" Internet Movie Database (IMDB) [Retrieved on Apr. 7, 2007].

"272OR Satellite Receiver User's Guide," General Instrument, 1991, pp. 58-61.

"Addressable Converters: A New Development at CableData," Via Cable, vol. 1, No. 12, Dec. 1981.

"Bell Atlantic Buys Cable TV Company for \$22bn," Financial Times (London), Oct. 14, 1993 p. 65.

"Cable Television Equipment," Jerrold Communications Publication, dated 1992 and 1993, pp. 8-2.1 to 8-6 and 8-14.1 to 8-14.3.

"Computer Network: Current Status and Outlook on Leading Science and Technology," Bureau of Science & Technology (Japan), vol. 1. Dec. 1986.

"Creation/Modification of the Audio Signal Processor Setup for a PC Audio Editor," IBM Technical Disclosure Bulletin 30(10):367-376 (Mar. 1988).

"D2B-Home Bus Fur Audio and Video," Selektor, Apr. 1990, pp. 10,

"Dial M for Movie", Funkschau 11/94 Perspektiven, Video on Demand, pp. 78-79. (English language translation attached).

"Digital Video Broadcasting (DVB); DVB specification for data broadcasting," European Telecommunication Standards Institute, Draft EN 301 192 V1.2.1 (Jan. 1999).

"Enhanced Content Specification," "ATVEF," from the internet at http://www.atvef.com/library/spec.html, printed Aug. 22, 2001, the document bears a Copyright date of 1998, 1999, 2000.

"Facsimile Transmission," NHK Research Monthly Report, Dec. 1987(Unknown author).

"Getting Started" Installation Guide, "Using StarSight 1" Manual and Remote Control "Quick Reference Guide."

"Interactive Computer Conference Server," IBM Technical Disclosure Bulletin 34(7A):375-377 (Dec. 1991).

"Interface Device for Conventional TVs to Improve Functionality," IBM Technical Disclosure Bulletin 36(7):53-54 (Jul. 1993).

"MSI Datacasting Systems," TV Communications Journal, Jan. 1973.

"Open TV fur interaktives Fernsehen," Trend and Technik, 9-95 RFE, p. 100. (English language translation attached).

"Open TV Launches OpenStreamer™ Technology for Broadcasters to Deliver First Ever Real-Time Digital Interactive Television," from the internet at http://www.opentv.com/news/openstreamer_press_final.htm, printed on Jun. 28, 1999, the document bears a copyright date of 1999.

"Prevue Networks and OpenTV(R) Agree to Work Together on Deploying Interactive Program Guides Worldwide," from the internet at http://www.opentv.com/news/prevuefinal.htm, printed on Jun. 28, 1999.

"Probe XL Brochure, Auto Tote Systems Inc.," (Newark, Delaware) (undated) 57 pgs.

"Prodigy Launches Interactive TV Listing", Apr. 22, 1994 Public Broadcasting Report.

"Technological Examination & Basic Investigative Research Report on Image Databases," Japan Mechanical Engineering Organization Int'l Society for the Advancement of Image Software, Japan, Mar. 1988.

"The New Media and Broadcast Policy: An Investigation & Research Conference Report on Broadcasting Diversification," Radio Regulatory Bureau, Japan Ministry of Posts & Telecommunications, Mar. 1982.

"TV Guide Online Set for Fall", Entertainment Marketing Letter, Aug. 1994.

"TV Listings Functional Spec.," Time Video Information Services, Inc., undated.

"Windows 98 Feature Combines TV, Terminal and the Internet," New York Times, Aug. 18, 1998.

Advertisement for "TV Decisions," Cable Vision, Aug. 4, 1986.

Alexander, "Visualizing cleared-off desktops," Computerworld, May 6, 1991, p. 20.

Antonoff, "Stay Tuned for Smart TV," Popular Science, Nov. 1990, pp. 62-65.

Bach et al., "Multimedia TV Set, Part 1" Radio-Fernsehen Elektronik (RFE), Sep. 1996, pp. 28, 30, 31. (English language translation attached.).

Bach et al., "Multimedia TV Set, Part 2 and Conclusion," Radio-Fernsehen Elektronik (RFE), Oct. 1996, pp. 38-40. (English language translation attached.).

Baer, "Innovative Add-On TV Products," IEEE Transactions on Consumer Electronics, vol. CE-25, Nov. 1979, pp. 765-771.

Bensch, "VPV Videotext Programs Videorecorder," IEEE Paper, Jun. 1988, pp. 788-792.

Bestler, "Flexible Data Structures and Interface Rituals for Rapid Development of OSD Applications," Proceedings from the Eleven Technical Sessions, 42nd Annual Convention and Exposition and Exploration of the NCTA, San Francisco, CA Jun. 6-9, 1993, pp. 223-236. Jun. 6, 1993.

Brochure, "A New Approach to Addressability," Cable Data, undated. Brochure, "Westar and Videotoken Network Present The Cable Computer," Revised Aug. 15, 1985 (Plaintiff's 334).

Brochure, Time Inc., "Now, Through the Advances of the Computer Age, You Can Get the Information You Want, When You Want It. Instantly and Conveniently, on Your Home TV Screen," Time Teletext, Time Video Information Services, Inc., undated (V 79167-79175).

Brochure, VTN "Videotoken Network, New Dimension Television," Dec. 1985 (Plaintiff's Exhibit 313).

Cable Computer User's Guide, Rev. 1, Dec. 1985 (Plaintiff's Exhibit 289).

CableData, Roseville Consumer Presentation, Mar. 1985.

(56) References Cited

OTHER PUBLICATIONS

Carne, "The Wired Household," IEEE Spectrum, vol. 16 No. 10, Oct. 1979, pp. 61-66.

Chan, "Learning Considerations in User Interface Design: The Room Model," Publication of the Software Portability Laboratory, University of Waterloo, Ontario, Canada, Jul. 1984.

Chang et al., "An Open-Systems Approach to Video on Demand," IEEE Communications Magazine, May 1994, pp. 68-80.

Christodoulakis et al., "Browsing Within Time-Driven Multimedia Documents," publication of the Institute for Computer Research, University of Waterloo, Waterloo, Ontario, Canada Jul. 1988 pp. 219-227

Office Actions and Replies from U.S. Appl. No. 10/453,388.

Cox et al, "Extended Services in A Digital Compression System," Proceedings from Eleven Technical Sessions: 42nd Annual Convention and Exposition of the National Cable Television Association, Jun. 1993, pp. 185-191.

Damouny, "Teletext Decoders—Keeping Up With the Latest Advances," IEEE Transactions on Consumer Electronics CE-30(3):429-435 (Aug. 1984).

Declaration Under 37 C.F.R. § 1.132 of Richard E. Glassberg, signed Oct. 20, 2006, filed Oct. 24, 2006, from U.S. Appl. No. 10/346,266. Edwardson et al., "CEEFAX: A Proposed New Broadcasting Service," Journal of the SMPTE 83(1):14-19 (Jan. 1974).

Electronic Programme Guide (EPG); Protocol for a TV Guide using electronic data transmission, by European Telecommunication Standards Institute, May 1997, Valbonne, France, publication No. ETS 300 707

European Examination Report dated Dec. 6, 2002 for Application No. EP 96917270.9.

European Search Report dated Nov. 19, 2002 from European Application No. 98944611.7.

European Telecommunication Standard, "Electronic Programme Guide (EPG); Protocol for a TV Guide using electronic data transmission," pp. 1-45, sections 1-11.12.7 and annex A-P, bearing a date of May 1997.

European Telecommunications Standards: Digital Broadcasting Systems for Television Sound and Data Services; Specification for Service Information (SI) in Digital Video Broadcasting (DVB) Systems, European Telecommunications Standards Institute, Dec. 1994.

Hartwig et al., "Broadcasting and Processing of Program Guides for Digital TV," Journal of the SMPTE, pp. 727-732, Oct. 1997.

Hedger, "Telesoftware: Home Computing Via Broadcast Teletext," IEEE Transactions on Consumer Electronics CE-25(3):279-287 (Jul. 1979).

Hiroshi et al, "Clearface: Translucent Multiuser Interface for TeamWorkStation," ECSCW, Sep. 1991, pp. 6-10.

Hiroshi et al, "Toward an Open Shared Workspace: Computer and Video Fusion Approach of Team Workstation," Communications of the ACM 34(12):37-50 (Dec. 1991).

Hoarty, "Multimedia on Cable Television Systems," Symposium Record Table TV Sessions, 18th International Television Symposium and Technical Exhibition, Montreux, Switzerland, Jun. 10, 1993, pp. 555-567.

Hofmann et al., "Videotext Programmiert Videorecorder," Rundfunktechnischen Mitteilungen, Broadcast Engineering Reports 26(6):254-257, Nov.-Dec. 1982.

Installation Guide, "Getting Started 1" Manual and Remote Control "Ouick Reference Guide."

Instructional Manual, "Sonic the Hedgehog," Sega of America, 1992. J. Roizen, "Teletext in the USA," Journal of the SMPTE, pp. 602-610, Jul. 1981.

James, "Oracle—Broadcasting the Written Word," Wireless World, pp. 314-316, Jul. 1973.

Judice, "Move Over Cable, Here Comes Video Via Voice Lines," Network World, Sep. 1986, p. 26.

Karstad, "Microprocessor Control for Color-TV Receivers," IEEE Transactions on Consumer Electronics CE-26:149-155 (May 1980).

Kornhaas, "Von der Textprogrammierung uber TOP zum Archivsystem," Radio Fernsehen Elektronik, vol. 40, No. 8, Aug. 30, 1991, pp. 465-468, XP 000240875 Veb Verlag Technik. Berlin, DE ISSN: 1436-1574.

Listing of computer code for operating system within the Cable Computer in 1985 (Plaintiff's Exhibit 298).

Listing of computer code for Video HTU Program (Plaintiff's Exhibit 299).

Lowenstein et al., "The Inevitable March of Videotex," Technology Review 88:22 (1985).

M/A-COM, Inc., "Videocipher II Satellite Descrambler Owner's Manual," dated Prior Feb. 1986, pp. 1-17.

Mack Daily, "Addressable Decoder with Downloadable Operation," Proceedings from the Eleven Technical Sessions, 42nd Annual Convention and Exposition of the NCTA, Jun. 6-9, 1993, pp. 82-89.

Mannes, "Smart Screens: Development of Personal Navigation Systems for TV Viewers," Video Magazine, Dec. 1993.

Mar. 19, 1985 letter from G. Knapp of CableData to R. Hansen of Weststar Communications, Inc. (Plaintiff's Exhibit 325).

Markowitz, "Companies Jump on Interactive Bandwagon," Discount Store News, Dec. 6, 1993, pp. 4 and 131.

McKenzie, "Oracle—An Information Broadcasting Service Using Data Transmission in the Vertical Interval," Journal of the SMPTE 83(1):6-10 (Jan. 1974).

Merrell, "Tac Timer," 1986 NCTA Technical Papers, pp. 203-206. No subject, "Tom Schauer (tschauer@moscow.com) Thu, Sep. 28, 1995 16:46:48-700," XP-002378870 [Retrieved from the Internet Apr. 28, 2006].

Peddicord, "New on TV: You Bet Your Horse," The Sun, Baltimore Maryland Dec. 15, 1994, 1 pg.

Pfister, "Teletext: Its Time Has Come," Prepared for the IGC Videotext / Teletext Conference, Andover, Massachusetts, Dec. 14, 1982, pp. 1-11.

Prevue Guide Brochure, Spring 1984.

Prevue Guide Brochure, Spring 1994.

Rayers, "Telesoftware by Teletext," 1984 IEEE Conference Papers 240:323.

Robinson et al., "'Touch-Tone' Teletext, A Combined Teletext—Viewdata System," IEEE Transactions on Consumer Electronics CE-25(3):288-294 (Jul. 1979).

Roseville City Council Presentation, Mar. 13, 1985 (Defendant's Exhibit 226).

Schlender, "Couch Potatoes! Now It's Smart TV," Fortune, Nov. 20, 1989, pp. 111-116.

Sealfon, "High Tech TV," Photographic, Dec. 1984.

Sorce et al., "Designing a Broadband Residential Entertainment Service: A Case Study," GTE Laboratories Incorporated, undated, pp. 141-148.

Sunada et al, "Teletext Color Television Receiver Model C-29M950, C26M940," NEC Home Electronics , NEC Giho, 1987.

Supplementary European Search Report for Application No. EP 98 93 5889, completed on Sep. 28, 2001.

Sussman, "GTE Tunes In to Home TV Shopping," PC Week, Jun. 28, 1988, p. C15.

System as described in Cable Data ad.

System as described in DIP II ad.

Tech Notes: Product Updates from M/A-COM Cable Home Group, "Videocipher Owner's Manual Update," Issue No. 6, Feb. 1986.

Technical White Paper, "Open TVTM Operating Environment," (© 1998 OpenTV Inc.), pp. 1-12.

Technology: Turn on, tune in and print out—An experimental interactive television service is set to alter our viewing habits, Financial Times (London), Oct. 14, 1993, p. 11.

Transcript of the Deposition of John Roop, Oct. 1996, pp. 186-187. Trial testimony of Michael Axford, *Prevue Interactive, Inc. and United Video Satellite Group, Inc.* v. *StarSight Telecast, Inc.*, May 9, 1998, pp. 186-187, 295-315, and 352-357.

Ueda et al, "Impact: An Interactive Natural-Motion-Picture Dedicated Multi-Media Authoring System," Communications of the ACM, Mar. 1991, pp. 343-350.

Using StarSight 2, Instruction Manual, StarSight Telecast, Inc., StarSight CB 1500 Customer Letter, 1994.

Various publications of Insight Telecast, 1992 and 1993.

(56) References Cited

OTHER PUBLICATIONS

Veith, "Television's Teletext," Elsevier Science Publishing Co., Inc, 1983, pp. 13-20, 41-51.

Videocipher Stipulation, May 1996.

VideoGuide, "VideoGuide User's Manual," pp. 1-27 (p. 11 is the most relevant).

U.S. Appl. No. 09/330,792, filed Jun. 11, 1699, Knudson et al. U.S. Appl. No. 09/332,244, filed Jun. 11, 1999, Ellis et al. U.S. Appl. No. 09/356,268, filed Jul. 16, 1999, Rudnick et al.

Leftwich et al., "StarSight Interactive Television Program Guide III", Functional/Interactional Architecture Specification Document, Orbit Interaction, Palo alto, California, Published before Apr. 19, 1995. Lists>What's on Tonite! TV Listings (fwd), Internet article (On line), Jan. 28, 1995, XP 002378869 [Retrieved on Apr. 28, 2006]. Magid, Lawrence J. "Rewind, reply and unwind with new high-tech TV devices," *LA Times*, May 19, 1999. This document was printed from the internet on Jun. 6, 1999.

Money, "Ch. 10: Viewdata" Teletext and Viewdata pp. 112-123, 1979.

* cited by examiner

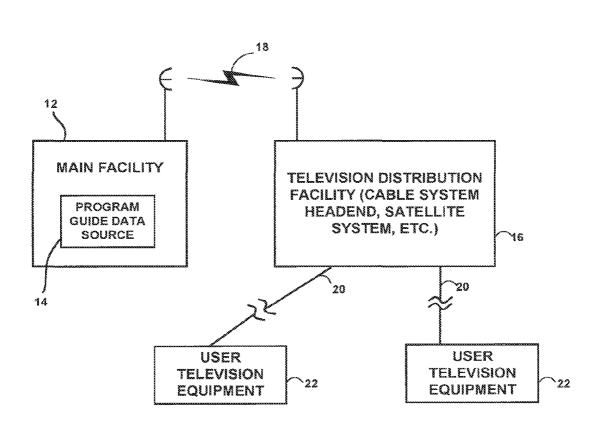


FIG. 1

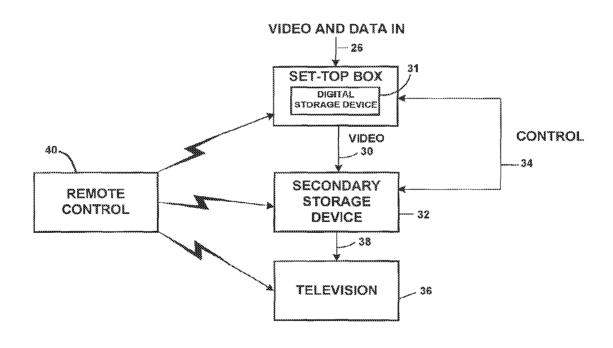


FIG. 2

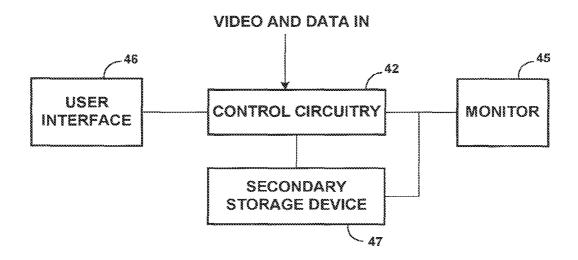


FIG. 3

<u>150</u>

				162
	CHANNEL	10:00 PM	10:30 PM	11:00 PM
152	46 PUBLIC TELEVISION	THE DESERTS OF AFRICA	WILDLIFE	
154	47 HBO	GHOST	TITANIC	
156	48 VH-1	BLUES BROTHERS		
158	49 ADU	PPV 1	PPV 2	PPV 3
160	50 WPTU	COOKING		
•	W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		168	- NAVOLABADA AND AND AND AND AND AND AND AND AND

FIG. 4

PROGRAMMING 9:30-10:30 PM							
<u>170</u>							
MOVIES							
	GHOST	CHANNEL 47 (HBO)	9:30 - 10:00				
	TERMINATOR	CHANNEL 7 (PPV)	8:00 - 10:00				
	THE BIG RED ONE	CHANNEL 2 (CBS)	8:30 - 10:30				
	THE BLUES BROTHERS	CHANNEL 48 (VH-1)	10:00 - 11:30				
	TITANIC	CHANNEL 47 (HBO)	10:00 - 1:30				
	WHEN HARRY MET SALLY	CHANNEL 4 (NBC)	9:00 - 11:00				
SPORTING	NEW YORK GIANTS YANKEE BASEBALL	CHANNEL 8 (WXBR) CHANNEL 11 (WLIW)	8:00 - 10:00 8:00 - 11:00				
NEWS	LOCAL NEWS NEWS EXTRA	CHANNEL 17 (WLIR) CHANNEL 5 (FOX)	9:30 - 10:00 10:00 - 10:30				
ADULT							
	PAY-PER-VIEW#1	CHANNEL 49 (ADU)	10:00 - 10:30				

FIG. 5

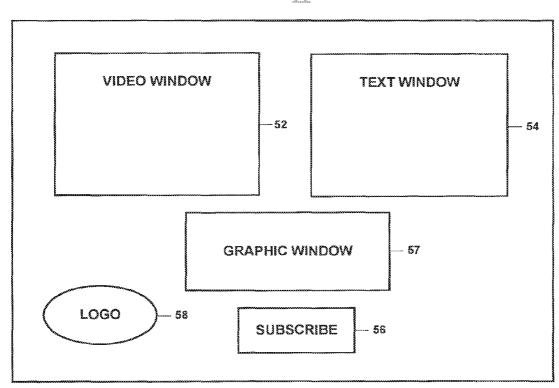


FIG. 6a

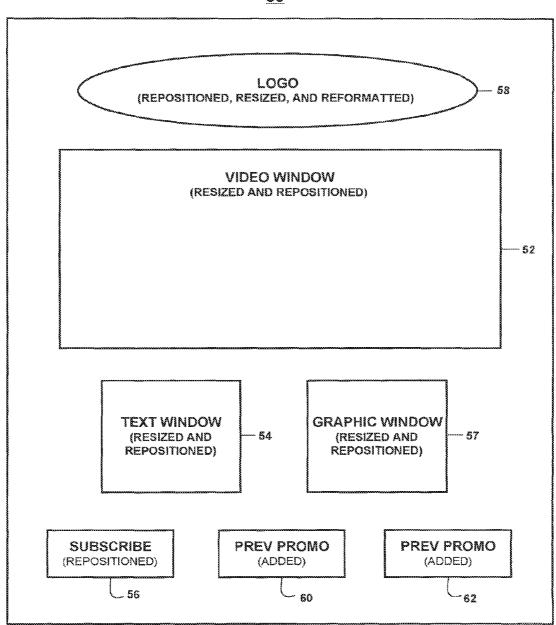


FIG. 6b

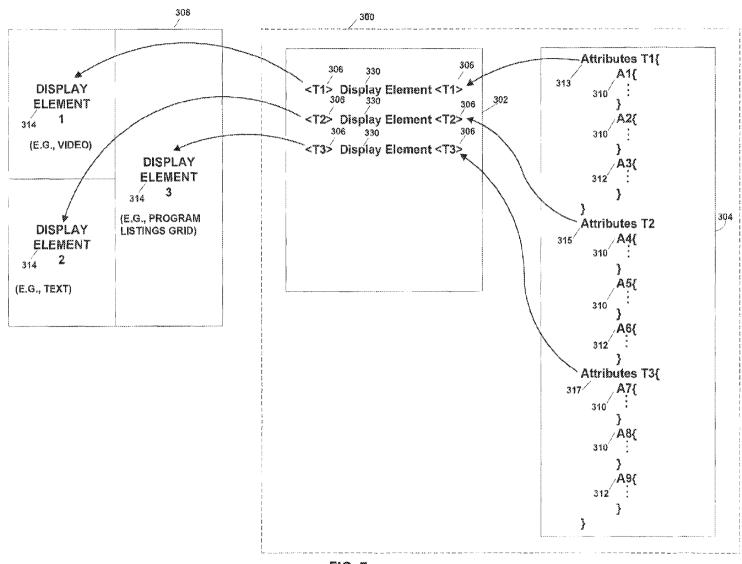
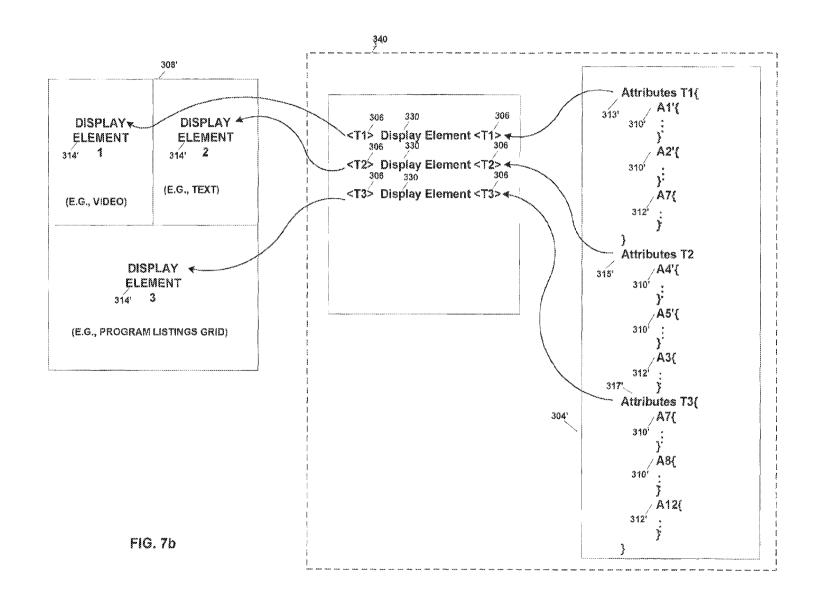



FIG. 7a

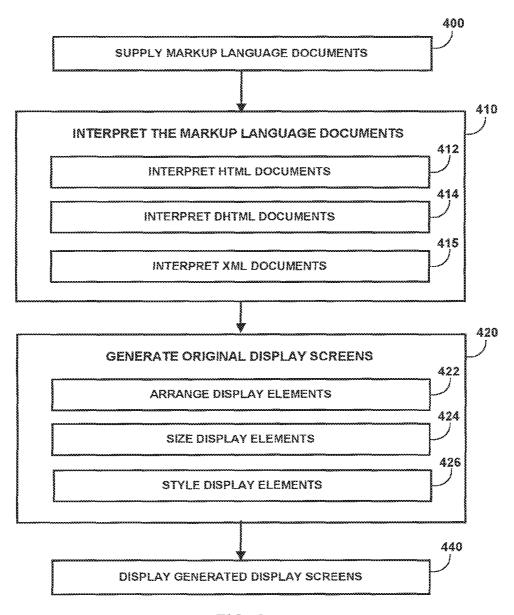


FIG. 8

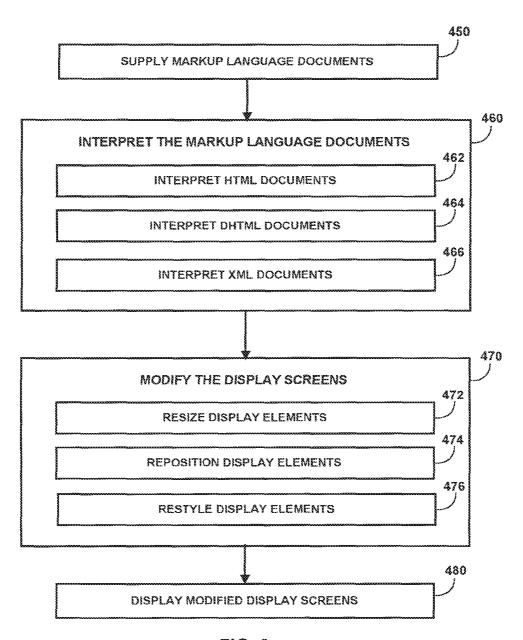


FIG. 9

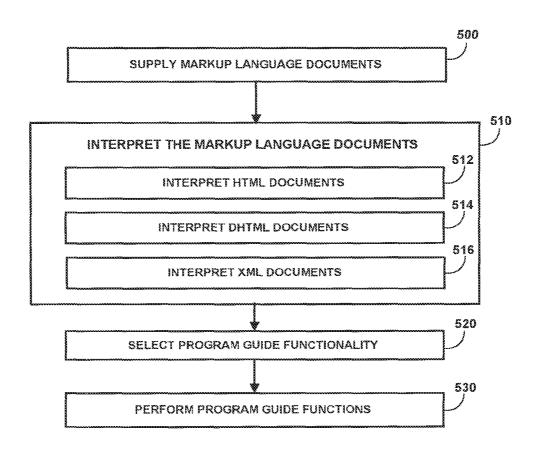


FIG. 10

METHODS AND SYSTEMS FOR UPDATING FUNCTIONALITY OF A SET-TOP BOX USING MARKUP LANGUAGE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/432,686, filed May 10, 2006 (now U.S. Pat. No. 8,010,979), which is a continuation of U.S. patent application Ser. No. 10/171,424, filed Jun. 12, 2002 (now U.S. Pat. No. 7,073,188), which is a continuation of U.S. patent application Ser. No. 09/227,358, filed Jan. 8, 1999 (now U.S. Pat. No. 6,442,755), which claims the benefit of U.S. provisional patent application No. 60/091,975, filed Jul. 7, 1998. These prior applications are hereby incorporated by reference herewith in their entireties.

BACKGROUND OF THE INVENTION

This invention relates to video systems, and more particularly, to interactive television program guide systems which provide for the flexible modification of program guide user screen layouts and program guide functionality.

Cable, satellite, and broadcast television systems provide viewers with a large number of television channels. Users have traditionally consulted printed television program schedules to determine the programs being broadcast at a particular time. More recently, interactive electronic television program guides have been developed that allow television program information to be displayed on a user's television.

Interactive program guides allow the user to navigate through television program listings using a remote control. In ³⁵ a typical program guide display, television listings are organized and displayed in subsets according to multiple selection criteria and are sorted in various ways. For example, one approach is to organize program listings into a grid.

With current interactive program guides, user screens (e.g., 40 screens containing program listings) and program guide functionality are fixed. It is generally not possible to chance user screens or program guide functionality without downloading an entire new program guide application.

Accordingly, it would be desirable if a markup language 45 could be used to provide for the downloading display characteristics of user screens and program guide functionality as plug-ins anytime, without modifying the code of the application.

It is therefore an object of the present invention to provide 50 an interactive television program guide that arranges program guide display elements using a markup language.

It is also an object of the present invention to provide an interactive television program guide that indicates and selects program guide functionality using a markup language.

It is also an object of the present invention to provide an interactive television program guide that may be updated by downloading markup language documents without user intervention.

SUMMARY OF THE INVENTION

This and other objects of the invention are accomplished in accordance with the principles of the present invention by providing an interactive program guide system that has pro- 65 gram guide display screen look and functionality assigned updated using markup language documents.

2

Program guide data is provided by a data source in a satellite uplink facility. This information is transmitted to a television distribution facility such as a cable headend via a satellite link. The television distribution facility distributes the information (and television programming signals) to user television equipment on which an interactive television program guide is implemented. One suitable distribution scheme involves transmitting television channels and distributing the information for program listings in the vertical blanking interval of one of the channels or in a sideband. Alternatively, the information for program listings may be provided on a television channel sideband, using an in-hand digital channel, using an out-of-band digital signal, or by any other suitable data transmission technique.

The user television equipment for receiving and processing the television program listings and program listings information may include a set-top box. The set-top box is also able to receive the television programming distributed by the television distribution facility. The program guide implemented on the set-top box processes television program listings information and generates display screens (e.g., an interactive television, program guide grid) for display, e.g., on a standard television monitor.

Program guide display elements may have a set of associ-25 ated attributes. Display element attributes may include display element style and layout information (e.g., font size, font type, color, screen coordinates, etc.), actions as with the display element, or any other suitable attribute. Display item actions may be indicated and selected using the markup language documents. The markup language used may be any suitable markup language or system of marking up, or tagging, a document (e.g., text file) so that the document indicates user display screen layout and styling and program guide functionality. For example, the markup language document may contain HyperText Markup Language (HTML), Dynamic HyperText Markup language (DHTML), or Extensible Markup Language (XML) code. The program guide is programmed to interpret the markup language documents and generate the display screens and provide program guide functionality according to the documents.

The use of a markup language provides an interactive television program guide in which display screens may be modified by downloading markup language documents without user intervention and without modifying the code of the application. Application functionality may be modified by attaching documents to the different modules in the same manner. The use of a markup language also allows a control entity to control some of the appearance and functionality of the guide and to create enhanced features and promotions based on designing a screen layout with off-the-shelf markup language editors and/or viewers.

Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the pre55 ferred embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram of a system in accor-60 dance with the principles of the present invention.

FIG. 2 is a schematic block diagram of illustrative user television equipment in accordance with the principles of the present invention.

FIG. 3 is a generalized schematic block diagram of portions of the illustrative television equipment of FIG. 2.

FIG. 4 is an illustrative program listings grid in accordance with the principles of the present invention.

FIG. 5 is an illustrative program listings list in accordance with the principles of the present invention.

FIGS. 6a and 6b are illustrative display screens in accordance with the principles of the present invention.

FIGS. 7*a*-7*b* illustrate how different markup language 5 documents may be used to arrange and style display elements and indicate and select program guide functionality.

FIGS. **8-10** are flow charts of steps involved in the operation of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

An illustrative system 10 in accordance with the present invention is shown in FIG. 1. Main facility 12 provides data 15 from program guide data source 14 to television distribution facility 16 via communications link 18. There are preferably numerous television distribution facilities 16, although only one such facility is shown in FIG. 1 to avoid overcomplicating the drawing. Link 18 may be a satellite link, a telephone 20 network link, a cable or fiber optic link, a microwave link, a combination such links, or any other suitable communications path. If it is desired to transmit video signals over link 18 in addition to data signals, a relatively high bandwidth link such as a satellite link may generally be preferred to a rela- 25 tively low bandwidth link such as a telephone line. Television distribution facility 16 may be any appropriate distribution facility, such as a cable system headend, a broadcast distribution facility, or a satellite television distribution facility.

The program guide data transmitted by main facility 12 to 30 television distribution facility 16 includes television program listings data (e.g., program times, channels, titles, and descriptions) and other program listings information for additional services other than television program listings (e.g., weather information, associated Internet web links, computer 35 software, etc.). It may also contain markup language documents such as HyperText Markup Language (HTML), Dynamic HyperText Markup Language (DHTML), or Extensible Markup Language (XML) documents, for updating the display screen layouts and functionality of a program guide 40 without user intervention.

The markup language documents may include the code of any suitable markup language or system of marking up, or tagging, a document (e.g., text file) so that the document arranges user display screen layout and styling and indicates 45 program guide functionality. For example, the markup language document may contain DHTML, or XML code. The program guide is programmed to interpret the markup language documents and generate the display screens and provide program guide functionality according to the documents.

Television distribution facility 16 distributes the television program listings, additional data, and markup language documents to multiple users via communications paths 20. Each user has user television equipment 22 for displaying the television program listings information using an interactive television program guide. Communication paths 20 preferably have sufficient bandwidth to allow television distribution facility 16 to distribute television programming to user television equipment 22. If desired, television programming may 60 be provided over separate communications paths (not shown).

Program guide data may be distributed to user television equipment 22 using any suitable scheme. For example, program guide data may be provided in a continuous stream or 65 may be transmitted at a suitable time interval (e.g., once per hour). If transmitted continuously, it may not be necessary to

4

store the data locally at user television equipment 22. Rather, user television equipment 22 may extract data "on the fly" as it is needed. If desired, television distribution facility 16 may poll user equipment 22 periodically for certain information (e.g., pay program account information or information regarding programs that have been purchased and viewed using locally-generated authorization techniques).

For clarity the present invention will be illustrated in connection with a system arrangement in which program guide data is distributed from a main facility to an interactive television program guide implemented on user television equipment, via a television distribution facility. Other suitable systems involve systems in which data is distributed to a program guide on user television equipment using other suitable distribution schemes, such as schemes involving data transmission over the Internet or the like. If desired, the interactive television program guide application may be implemented using a client-server architecture in which the primary processing power for the application is provided by a server located at, for example, the television distribution facility or the main facility and user television equipment acts as a client processor.

An illustrative arrangement for user television equipment 22 is shown in FIG. 2. User television equipment 22 of FIG. 2 receives video and data from television distribution facility 16 (FIG. 1) at input 26. During normal television viewing, the user tunes set-top box 28 to a desired television channel. The signal for that television channel is then provided at video output 30. The outputted signal is typically either a radiofrequency (RF) signal on a predefined channel (e.g., channel 3 or 4), or a demodulated video signal, but may also be a digital signal provided to television 36 on an appropriate digital bus (e.g., a bus using the IEEE 1394 standard, (not shown)). The video signal at output 30 is received by optional secondary storage device 32.

Optional secondary storage device 32 can be any suitable type of analog or digital program storage device (e.g., a videocassette recorder, a digital video disc (DVD) player with the ability to record DVD discs, etc.). Program recording and other features may be controlled by set-top box 28 using control path 34. If secondary storage device 32 is a videocassette recorder, for example, a typical control path 34 involves the use of an infrared transmitter coupled to the infrared receiver in the videocassette recorder that normally accepts commands from a remote control such as remote control 40. Remote control 40 may be used to control set-top box 28, secondary storage device 32, and television 36.

The interactive television program guide may run on settop box 28, on television 36 (if television 36 has suitable processing circuitry and memory), or on a suitable analog or digital receiver connected to television 36. The interactive television program guide may also run cooperatively on both television 36 and set-top box 28. Interactive television application systems in which a cooperative interactive television program guide application runs on multiple devices are described, for example, in Ellis U.S. patent application Ser. No. 09/186,598, filed Nov. 5, 1998 which is hereby incorporated by reference herein in its entirety.

The user may record programs and program data in digital form on optional digital storage device 31. Digital storage device 31 may be a writable optical storage device (such as a DVD player capable of handling recordable DVD discs), a magnetic storage device (such as a disk drive or digital tape), or any other digital storage device. Interactive television program guide systems that have digital storage devices are described, for example, in Hassell et al. U.S. patent applica-

tion Ser. No. 09/157,256, which is hereby incorporated by reference herein in its entirety.

Digital storage device **31** can be contained in set-top box **28** or it can be an external device connected to set-top box **28** via an output port and appropriate interface. If necessary, processing circuitry in set-top box **28** formats the received video, audio and data signals into a digital file format. Preferably, the file format is an open file format such as the Motion Pictures Expert Group (MPEG) MPEG-2 standard. The resulting data is streamed to digital storage device **31** via an appropriate bus (e.g., a bus using the IEEE 1394 standard), and is stored on digital storage device **31**.

Television 36 receives video signals from secondary storage device 32 via communications path 38. The video signals on communications path 38 may either be generated by secondary storage device 32 when playing back a prerecorded storage medium (e.g., a videocassette or a recordable digital video disc), by digital storage device 31 when playing back a prerecorded digital medium, may be passed through from set-top box 28, may be provided directly to television 36 from 20 set-top box 28 if secondary storage device 32 is not included in user television equipment 22, or may be received directly by television 36. During normal television viewing, the video signals provided to television 36 correspond to the desired channel to which the user has tuned with set-top box 28. The 25 video signals provided to television 36 may also be by set-top box 28 when set-top box 28 is used to play hack information stored on digital storage device 31.

A more generalized embodiment of user television equipment 22 (FIG. 2) is shown in FIG. 3. As shown in FIG. 3, 30 control circuitry 42 of user television equipment 22 receives the program guide data, programming, and markup language documents from television distribution facility 16 (FIG. 1). Video signals are typically provided on multiple television channels. The program guide data and markup language 35 documents may be provided on a television channel sideband, in the vertical blanking interval of a television channel, using an in-band digital channel, using an out-of-band digital signal, or by any other suitable data transmission technique.

Control circuitry 42 may be configured to interpret the 40 markup language documents and to generate program guide display screens for display on monitor 45. The program guide display screens may be generated with display items at positions and with styles that are indicated by the markup language documents. In addition, actions assigned to display 45 items by the markup language documents may be selected by control circuitry 42 to provide program guide functionality. The functions of control circuitry 42 may be provided using the set-top box arrangement of FIG. 2. Alternatively, these functions may be integrated into an advanced television 50 receiver, personal computer television (PC/TV), or any other suitable arrangement. If desired, a combination of such arrangements may be used. In client-server based program guides, for example, control circuitry 42 may be contained in suitable equipment at television distribution facility **16**.

The user controls the operation of user television equipment 22 with user interface 46. User interface 46 may be a pointing device, wireless remote control, keyboard, touchpad, voice recognition system, or any other suitable user input device. To watch television, the user instructs control circuitry 42 to display a desired television channel on monitor 45. To access the features of the program guide, the user instructs the program guide implemented on user television equipment 22 to generate a main menu or a desired program guide display screen for display on monitor 45.

When a user indicates a desire to view television programming information (e.g., by using a "guide" key on remote

6

control 40), the program guide generates an appropriate program guide display screen, such as a program listings screen, for display on monitor 45. A program listings screen may contain one or more lists of programs organized according to multiple organization criteria (e.g., by program type, theme, or any other pre-defined or user defined and selectable criteria) and sorted in various ways (e.g., alphabetically). The program listings screen may be overlaid over a program being viewed by the user or overlaid over a portion of the program in a "browse" mode.

One approach is to organize program listings into a program listings grid. FIG. 4 illustrates the display of program listings in program listings grid 150. Program listings grid 150 may be divided into a number of columns 162 which correspond to program broadcast times and which may be equally spaced apart (e.g., in thirty-minute steps). Program listings may be displayed in the grid in sub-sets according to multiple selectable organization criteria and sorted in various ways. Program listings row 152 contains, for example, selectable program listings for THE DESERTS OF AFRICA and WILDLIFE on channel 46 (Public Television). Program listings row 154 contains, for example, selectable program listings for GHOST and TITANIC on channel 47 (HBO). Program listings row 156 contains, for example, selectable program listings for programs BLUES BROTHERS on shared channel 48 (VH-1). Program listing row 158 contains, selectable program listings for programs, PPV 1, and PPV 2 on channel 49 (ADU). Program listings row 160 contains a selectable program listing for COOKING on channel 49 (WPTU). The programs on each channel are typically different.

Program listings grid 150 may have movable cell highlight region 151, which highlights the current grid cell. The user may position highlight region 151 by entering appropriate commands with user interface device 52. For example, if user input interface device 52 has a keypad, the user can position highlight region 151 using "up," "down," "left," and "right" cursor keys. Remote program listings may also be panned left, right, up, and down by positioning highlight region 151 using the cursor keys on remote control 70. Alternatively, a touch sensitive screen, trackball, voice commands, or other suitable device may be used to move highlight region 151 or to select program listings without the use of highlight region 151. In still another approach, the user may speak a television program listing into a voice request recognition system. Any other suitable approach may be used.

After a user selects a program listing, the interactive program guide may provide the use with the opportunity to access a number of program guide features. For example, the user may access additional information (typically text or graphics, but possibly video and other information) about the listing, set a reminder, schedule an associated program for recording, set parental control features, set and navigate through favorite channels, or any other suitable program 55 guide feature.

Program listings may also be displayed for the user in a list. FIG. 5 illustrates a program listings display screen having a program listings list displayed in accordance with the principles of the present invention. Scrollable program listings lists may display program listings in subsets according to user-selected organization criteria. Any suitable organization criteria and sorting scheme may be used. Scrollable program listings list 170 of FIG. 8, for example, organizes program listings according to program type and then sorts the listings alphabetically in each sub-set. The television program listings display screen of FIG. 5 also has movable cell highlight region 171 for moving within the list and selecting listings.

Program guide display screens may display a number of display elements such as program listings grid 150, program listings list 170, or any other suitable display element. Display elements may be arranged or styled using the markup language documents. Program guide functions may be indicated and selected using the markup language documents. Preferably, the markup language used is a standardized and widely accepted markup language, such as HTML, DHTML, or XML. The program guide is also programmed to interpret the markup language documents. The program guide is programmed to generate display screens and select program guide functionality according to the markup language documents.

Display screen style and layout and program guide functionality may be set initially for the program guide and later 15 modified by the markup language documents supplied by main facility 12 (FIG. 1) to the interactive television program guide. In practice, when the program guide is going to be updated with a new markup language document an operator at a main facility, television distribution facility, or other inter- 20 ested facility generates a desirable markup language document using any suitable word processor or markup language document editor. The markup language document may be provided to the interactive program guide manually or automatically (e.g., at a predefined time). The markup language 25 document is provided to, stored by, and interpreted by the interactive program guide without the intervention of the user. This provides for allowing an operator to centrally update the display characteristic and functionality of the program guide without user intervention.

Display elements are defined using a non-markup language approach and are preprogrammed into the program guide. Display elements may, for example, be programmed into the interactive program guide using any suitable programming language (e.g. Visual BASIC, C++, etc.). The markup lan- 35 guage documents may organize display element attributes (e.g., style, layout, and action attributes) into finite sets of display element attributes which may be a subset of the attributes actually programmed into the program guide. The sets of display element attributes may be assigned to the 40 display elements using indicators, or tags. The tags may indicate where to place the defined display elements on the program guide display screen. The tags may also indicate styles to be applied to the display elements. Preferably, the display elements are programmed to render themselves to the pro- 45 gram guide display screen at the position and with the style defined in the markup language document. The defined display elements may include any suitable program guide display screen element, such as advertisement elements, program listings grid elements, video window elements, text 50 window elements, or any other suitable display screen or standard markup language element.

Program guide functions are defined using a non-markup language approach and are preprogrammed into the program guide. Functions may, for example, be programmed into the 55 program guide using any suitable programming language (e.g. Visual BASIC, C++, etc.). Program guide functionality may be apparent to the user through display element actions, or may be transparent. Any suitable display element action may be assigned and selected using markup language documents. For example, one action may be to replace a partial screen program listings grid (e.g., grid 150) with a full-screen program listings grid in response to a suitable user command. Another action may cause the grid to scroll, page, change its display (e.g., display listings by theme instead of channel, 65 display listings in a list instead of in a grid), start a program search or action list, or perform any other suitable action in

8

response to a suitable user command. The user selection of a program listing in the grid may, for example, cause the program guide to display a program listings information screen, start a recording, set a reminder, or perform other suitable actions.

When markup language documents are supplied to the interactive television program guide, the program guide interprets the documents and generates or modifies the appropriate program guide display screens and program guide functionality according to the documents without intervention by the user. The display characteristics of the display screens may be changed without the need for updating application code, and may be completed in real time and without ever involving the user in the update process.

FIG. 6a illustrates how a display screen, screen 50, may look after the program guide has been programmed with a markup language document, has interpreted it, and has generated the display screen and selected program guide functionality. Screen 50 may contain a number of display elements. For example, screen 50 may contain video window 52 and text window 54 for displaying promotional videos and information regarding the program being promoted (e.g., subscription price), respectively. Screen 50 may also have graphic window 57 for displaying a program listings grid (FIG. 4), such as program listings grid 150, or a program listings list, such as program listings list 170 (FIG. 5), or other graphic.

Screen 50 may also contain other display elements, such as on-screen options, or "buttons", which allow the user to access some feature of the program guide. For example, the user may "press" subscribe button 56 by entering appropriate commands on user interface 46 (FIG. 3). By pressing subscribe button 56 the program guide may allow the user to subscribe to the program being promoted. Screen 50 may also include a picture of the local service provider's logo, such as logo area 58.

The layout of screen **50** may become undesirable over time. For example, it may be decided that having a bigger video area and a smaller text area would be more attractive to the user. It may also be desirable to add additional features to the display screen, such as providing a "next" and "previous" button to allow users to scroll through promotional videos at their own pace. It may also be desirable to update the logo of the service provider.

FIG. 6b illustrates how the display screen characteristics of screen 50 may be changed after the program guide has been supplied with a new markup language document from main facility 12 or television distribution facility 16 (FIG. 1) and has interpreted the document and regenerated screen 50. After screen 50 is regenerated by the program guide, video window 52, text window 54, and graphic window 57 may have been resized and repositioned accordingly. In addition if graphic window 57 contains a program listings grid, for example, the number of rows or columns of the grid may be changed, the start time of the grid adjusted, or any other suitable change to the grid made. Logo area 58 may have been resized and repositioned. Logo area 58 may also have been reformatted or styled by, for example, changing the style of text used, changing the colors of the logo, or by adding any other type of special effect. Next button 60 and previous button 62 may have been added.

FIG. 7a illustrates how markup language documents may be used initially to arrange and style display elements and to indicate and select program guide functionality using a markup language document that is initially supplied to the program guide. Any suitable markup language or approach may be used. In practice, the markup language documents

may be continuous, from top to bottom and the attributes of display items may immediately follow below a display item tag. Markup language document 300 has been illustrated, however, having left and right portions 302 and 304 to more clearly illustrate the principles of the present, invention. Portion 302 of markup language document 300 illustrates how display element identifier 300 may be tagged by tags 306. Portion 304 of markup language Document 300 illustrates how display element attributes may be organized into sets using markup language documents and assigned using the tags.

As shown in FIG. 7*a*, display element attributes 310 and 312 may be organized into sets 313, 315, and 317. Each display element may be assigned a set of attributes. Markup language document 300 may tag display element identifiers 330 using tags 306. Tags 306 are generically labeled T1, T2, and T3 to indicate which display element is being tagged (display element 1, display element 2, and display element 3, respectively). Tags 306 have associated attributes 310 (e.g., 20 A1, A2, A4, A5, A7, and A8) from the sets that may indicate, for example, where on the display screen the display elements will be placed, their size, and how they will be styled (e.g., color, font special effects, etc.). To generate a display screen such as screen 308, the interactive program guide may parse 25 the markup language document, extract the style and layout information, and generate a display screen accordingly.

FIG. 7a also illustrates how program guide functionality may be indicated and selected using markup language document 300. The program guide may have been preprogrammed with a large number of actions. Portion 304 of markup language document 300 may be used to select from those actions the actions that are suitable for a particular display element. Attributes 312 may be included in the finite sets of attributes 313, 315, and 317 to indicate the selected actions. While a 35 display item may have multiple associated actions (e.g., a menu), only one attribute 312 has been shown for each set to avoid overcomplicating the drawing. The actions may be assigned to display elements 314 as indicated in FIG. 7a using tags 306.

FIG. 7b illustrates how the display characteristics of display screen 308 may be changed or modified by rearranging and restyling display elements 314 using a different markup language document, such as markup language document 340. As shown, markup language document 340 may use tags 306 45 to assign sets of attributes to the display items. When the interactive program guide interprets and parses markup language document 340, it obtains the new or changed attributes 310' from the sets and uses tags 306 to generate, for example, display screen 308' with display elements 314'. As illustrated 50 when display screen 308' is compared with display screen 308 of FIG. 7a, display elements 314 may be resized, repositioned, and restyled (not shown). Thus, a first markup language document (300) may be used by the interactive program guide to generate a first display screen 308, and a second 55 markup language document (340) may be used to modify the display screen (308') (e.g., reposition, resize, and restyle display elements 314), thereby generating a second display screen with display characteristics different from the first.

FIG. 7*b* also illustrates how different actions for the display 60 elements may be assigned and selected using markup language documents. Different actions may be included in the sets as illustrated when comparing sets **313**, **315**, and **317** of FIG. 7*a* with sets **313'**, **315'**, and **317'** of FIG. 7*c*. New actions may be indicated and previously indicated actions dropped, 65 as illustrated by set **317'** and **315'**, (e.g., A**12** and A**6**). In addition, the actions may be selected for different display

10

elements as shown in set 313' (e.g., A7 was moved from set 317 of FIG. 7a to set 313' of FIG. 7b).

Steps involved in operating the program guide of the present invention are set forth in FIGS. 8-10. FIG. 8 illustrates steps involved in generating display screens. At step 400, the program guide is supplied with markup language documents which arrange and style the display elements as part of the initial programming of the program guide. The documents are preferably of a widely accepted and standardized markup language, such as HTML, DHTML, XML, or any other suitable markup language. At step 410, the program guide interprets the markup language documents. Particular types of markup language documents may be interpreted at substeps 412, 414 and 415, respectively. The display screens are generated according to the markup language documents at step 420. This may include substeps 422, 424, and 426, in which the display elements are arranged, sized, and styled, respectively. At step 440, the program guide displays the display screens according to the markup language documents.

FIG. 9 illustrates steps involved in modifying program guide display screens. At step 450, the program guide is supplied with markup language documents which may resize, reposition, or restyle the display elements. The documents are preferably of a widely accepted and standardized markup language, such as HTML, DHTML, XML, or any other suitable markup language. At step 460, the program guide interprets the markup language documents. Particular types of markup language documents may be interpreted at substeps 462, 464, and 466 respectively. The display screens are modified at step 470. This may include substeps 472, 474, and 476, in which the display elements are resized, repositioned, and restyled respectively. At step 480, the program guide displays the display screens according to the markup language documents.

FIG. 10 illustrates steps involved in assigning and selecting program guide functionality. The program guide functionality indicated, and selected may be apparent or hidden to the user. At step 500, the program guide is supplied with markup language documents which assign program guide functionality to display items. The documents may be supplied as part of the initial programming of the program guide, or may be supplied by a main facility or television distribution facility when the program guide is updated. The documents are preferably of a widely accepted and standardized markup language, such as HTML, DHTML, or XML. At step 510, the program guide interprets the markup language documents. As shown, HTML, DHTML, or XML markup language documents may be interpreted at substeps 512, 514, and 516, respectively. Program guide functionality is selected for the display items at step 520 according to the markup language documents. At step 540, the program guide performs the selected functions.

The foregoing is merely illustrative of the principles of this invention and various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention.

What is claimed is:

1. A method comprising:

generating for display, with a set-top box, a display item having a first program function, wherein the first program function is based on a non-markup language, and the first program function is preprogrammed on the settop box;

receiving, with the set-top box, a markup language document, from a remote source;

- interpreting the markup language document, with the settop box, to determine that the markup language document assigns a second program function to the display item:
- updating the set-top box based on the markup language 5 document such that the display item has the second program function; and

generating for display, with the set-top box, the display item having the second program function.

- 2. The method of claim 1, wherein the updating the set-top 10 box is in response to a user input.
- 3. The method of claim 1, wherein the second program function causes a display of the display item to change in response to a user input.
- 4. The method of claim 1, wherein updating the set-top box based on the markup language document such that the display item has the second program function comprises updating a displayed plurality of program listings from being displayed on a first portion of the display screen having a first size to the plurality of program listings being displayed on a second 20 portion of the screen having a second size, where the second size is larger than the first size.
- 5. The method of claim 1, wherein updating the set-top box based on the markup language document such that the display item has the second program function comprises updating a 25 displayed plurality of program listings from being displayed in an arrangement by channel to the plurality of program listings being displayed in an arrangement by theme.
- 6. The method of claim 1, wherein updating the set-top box based on the markup language document such that the display 30 item has the second program function comprises updating a displayed plurality of program listings from being displayed as a grid to the plurality of program listings being displayed as a list.
- 7. The method of claim 1, wherein the second program 35 function causes, in response to a user input, the updated set-top box to generate for display a program listing information screen, start a recording, set a favorite channel, or set a reminder.
- **8**. The method of claim **1**, wherein the markup language 40 document is a Hyper Text Markup Language document, a Dynamic Hyper Text Markup Language document, or an Extensible Markup Language document.
- **9**. A system comprising a set-top box with control circuitry configured to:

12

- generate for display a display item having a first program function, wherein the first program function is based on a non-markup language, and the first program function is preprogrammed on the set-top box:
- receive a markup language document from a remote source;
- interpret the markup language document to determine that the markup language document assigns a second program function to the display item;
- update the set-top box based on the markup language document such that the display item has the second program function; and
- generate for display, the display item having the second program function.
- 10. The system of claim 9, wherein updating the set-top box is in response to a user input.
- 11. The system of claim 9, wherein the second program function causes a display of the display item to change in response to a user input.
- 12. The system of claim 9, wherein updating the set-top box comprises updating a displayed plurality of program listings being displayed on a first portion of the screen having a first size to the plurality of program listings being displayed on a second portion of the screen having a second size, where the second size is larger than the first size.
- 13. The system of claim 9, wherein updating the set-top box comprises updating a displayed plurality of program listings being displayed in an arrangement by channel to the plurality of program listings being displayed in an arrangement by theme.
- **14**. The system of claim **9**, wherein updating the set-top box comprises updating a displayed plurality of program listings being displayed as a grid to the plurality of program listings being displayed as a list.
- 15. The system of claim 9, wherein the second program function causes, in response to a user input, the updated set-top box to generate for display a program listing information screen, start a recording, set a favorite channel, or set a reminder.
- 16. The system defined in claim 9, wherein the markup language document is a Hyper Text Markup Language document, a Dynamic Hyper Text Markup Language document, or an Extensible Markup Language document.

* * * * *