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1.  Introduction 
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where g k j( , ) ranges over the natural numbers.  Because range(g k j( , ))   range(k), every value 
l g k j ( , )  corresponds to some index k in the sum S, so the effect of the double sum S   in 
general is to count particular terms of S more than once. 
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If we now let g k j( , ) =  jk , then  
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a sum that is very difficult to treat analytically.  However, for j = 1, kjkg ),( , so S  includes 

every term of S and furthermore since jk is a natural number, every term of S  appears exactly 
once in S but possibly many times in S .  Therefore S  “overcounts” the terms of S.  If we can 
determine the extent of overcounting, we can arrive at expressions for S  that involve only a 
single sum. 
 

We define the counting function )(kg  as the number of times the term f k( ) of S is included 

in the double sum S  : 
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It is useful to note that the double sum can be rewritten as the single sum on the right-hand side 
and that the form of  g k( )  depends only on g k j( , ) and not on f k( ). 

 
It is sometimes more convenient to write (1.2) as 
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where  g gk k( ) ( )  1, which we shall call the overcounting function of g, is the number of 

times each term f k( ) of S is overcounted in the double sum S  . 
 
We may also rewrite S as the inner product of two infinite vectors I and F, where 

I  { , , ,...}1 1 1  is the identify vector  and F f f f k { ( ), ( ),..., ( ),...}1 2 .  I is the characteristic 
vector of the index set of the sum S; Ik  = 1 whenever k corresponds to a term in the sum s and is 
zero otherwise.  In brief notation, S I F  .  Then if K g g { ( ), ( ), ...} 1 2 , we have 

S K F   .  K then is a vector indicating the multiplicity in S  of each term of S. 
 

2.  Elementary Examples 
 
One of the simplest examples of a counting function  g k( )  is obtained by taking 

g k j k j( , )   .  This results in each term f k( ) being counted k 1 times, once for each 
1 1  j k .  So  k j k k  ( ) 1.  Therefore we may immediately write by inspection, for 

example, that 
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The ordinary generating function of the  k j n ( )  is 
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We may also derive: 
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A slightly more complicated counting function is associated with g k j k j( , )   .  In this case, 

the term f l( ) is counted in S   whenever there is a pair of indices ( , )i j  such that i j l  .  The 
number of times this occurs is the same as the number of divisors 0 ( )l  of l.  Therefore, 
 k j k k ( ) ( )0  and we have: 

 
1

11

0 2

1( )

( )
( )

k j

k

k
s

s
kj

s
k

 












    (2.10) 



OVERCOUNTING FUNCTIONS  4 
 

 
The ordinary generating function of the  kj n( )  is 
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Some additional examples: 
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The latter follows from the identity 
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3.  A Non-Trivial Example 
 
Let g k j k j( , )  .  The number of times a particular summand f n( )  appears in S   for a 

particular value of n is the number of ways W(n) that n can be expressed as an integer power of a 
natural number.  We must turn our attention to finding an expression for W(n). 

 
Let p1

n 1p2
n 2…  be the prime factorization of n .  This can be the power of an integer greater 

than one only if G n n n( ) gcd( , ,...) 1 2  is greater than one.  If the ni have no common divisor 
other than 1, then n cannot be of the form u 

v, u < n, v > 1, since v would then divide each of the 
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ni .  Therefore, if g (n ) = 1, then W(n ) = 1, that is, n is a power of itself only.  We now show that 
W n G n( ) ( ( )) 0 , where 0 ( )k  is the number of divisors of k. 

 
Suppose b  is a divisor of G(n ).  Then n p pn b n b b ( ...)/ /

1 2
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natural number, so n  is a power of a natural number.  Now let c be a natural number that is not a 
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at least one of the exponents n ci /   is not a natural number, so the corresponding factor pi
n ci /  is 

not a natural number and the product in parentheses is not a natural number. 
 
Therefore, 
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Here are the first several non-zero values of 

k j n( ) : 
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The ordinary generating function of the 
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Now we can examine particular cases.  Let S   =  (a) – 1.  That is,  f (k ) =  k 

–a. 
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Therefore, from (3.2) it follows that 
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For a  1, this yields the remarkable result that 
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giving the expansion 
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A simple way to understand this result is to ask for how many values of s does the term 1/n 

appear in the expansion of ( )s 1?  The answer is for each s such that n is a power of s, namely 
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Note that for p prime, ( ) ( )p kk  0 1.  
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We may now consider values of ( )k a .  For example, it is possible to compute 

 

T
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( )
( )

2
2

2
2







 

 
via the following argument.  The overcounting function ( )k 2  enumerates the number of 
appearances of k 2  in the semi-infinite matrix 
  

 
1,, )1(

1
; 


ijiji j

rrR  

 
The sum of row i of R is given by: 
 

1

1
1 1

1
1 ( )

( )
j

i
i

j 
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



   

 
A term of the form k 2  appears in every odd row of R.   Such a term also appears in an 

even row 2i of R only when it is of the form ( )k i 2 2 1.  Therefore, 
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However, 
 

 
4

3
1)2(
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

k

k  

and 
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Therefore, 
 

T
k

kk

( )
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( ) coth . ...2
13

8
2

4
0 768402956886064

2

2
2

    




      . 

 
To compute T(3), note that all the terms of row i of R are included in the summation where 

( ) (mod )i  1 0 3  and only those terms in the other rows are included that are of the form 

  )1(3  i
k .  This is true because ni1  cannot be a perfect cube if ( ) (mod )i  1 1 2 3or  unless n is 

a perfect cube.  Therefore, 
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  0 239309669474300. ... 
 

Likewise for T(4), except that when ( ) (mod )i  1 2 4 , a term is a perfect fourth power when 
it is an even power of a term of the form k 2 .  Hence, 
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  0 169480298487417. ... 

 
 

In general,  
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4.  Some LCM Examples 

 
Let g k j k j( , ) ( , ) LCM , the least common multiple of k and j.  The number of times f n( )  

appears in S   for a particular value of n is the number M(n) of ordered pairs of natural numbers 
whose LCM is n.  It is shown in a separate paper that  

 

M n e n ni
i

n

( ) ( ) ( ),
( )

   

 2 1 1

1
0

2


  (4.1) 

 
where ( )n  is the number of distinct prime factors of n and ei  is the exponent of the ith prime in 
the prime factorization of n.  Conventionally, we take M(1) = 1. 

 

  )2(

)()()(

),(LCM

1 3

1

2
0

11 1 a

a

k

k

k

kM

jk k
a

k
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k j
a 
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 

















 (4.2) 

 
The last equality on the right is from Titchmarsh 1.2.9. 
 

1

2 2
1

2

2 111 1 1
LCM( , )

( )( )
k j

jk
k

k

k

k
k

M k
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













    




 (4.3) 

 
The quantity 2( )k  is the number of quadratfrei divisors of k, that is, divisors consisting of a 
product of distinct primes.  (See Hardy & Wright 17.8.) 

 
 

5.  Sums of Squares 
 
Let g k j k j( , )  2 2 .  The number of ways q n( ) that n can be expressed as the sum of two 

squares of natural numbers has the generating function 
 



OVERCOUNTING FUNCTIONS  12 
 

2

11

2

)()( 







 







 m

m

k

k xxkqxQ  (5.1) 

 






























1

2

11 1

)(1 2

22

k
k

m

m

j k
jk a

kq
a

a
 (5.2) 
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22
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k
a
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6.  Multiple Products 

 
We may transform multiple products in a manner similar to multiple sums, except that the 

counting function  g k( )  then appears as an exponent rather than as a factor. 

 
In general, 
 

a ag k j
kj

k
k

kg
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
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






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11 1
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For example,  
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 (6.2) 

 
Unfortunately, (6.2) does not converge.  This may be seen by rewriting the product as 
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 (6.3) 

 
The right-hand side of (6.3) converges if and only if the following double sum converges: 
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From the relation 
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The quantities c
j

k
j

k

j





( !)2

2

1

1

 are of some interest.  They are all rational, and in the limit as j 

grows large, approach the limit  / sinh .  In general, we have 
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7. Partition Products 
 
The idea of overcounting also has application to infinite products.  Consider Euler’s product 

expansion of the zeta function: 
 

( )s
p ks

p
s

k













 1

1

1

2 1

 , (7.1)  

 
where the sum is taken over all primes p.  The previous investigation leads us to inquire what the 
result would be if the product were over all natural numbers greater than two instead of just over 
the primes. 

 
Let z (n ) be the total number of factorizations of n into products of factors, not necessarily 

prime, in which factorizations that differ only in the order of their factors are not treated as 
distinct. 

 
For n prime, z (n ) = 1; that is, the only factorization is 1n .  If n  is a product of k distinct 

prime factors, then we have 
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z n b S k mk
m

k

( ) ( , ) 

 2

1

 ,  (7.2)  

 
where S k m2 ( , )  is a Stirling number of the second kind and bk is the kth Bell number, which gives 
the total number of partitions of a set of k distinct elements.  The first several values of bk are: 

  
 k 1      2      3   4          5   6    7       8            9             10 
 bk  1      2     5       15       52       203       877      4140      21147      115975 
  
 
If n is the k th power of a prime, then any partition of the number k corresponds to a 

factorization of n.  For example, the partition 7 = 3 + 2 + 2 corresponds to the product p p p3 2 2 . 
 
 z (n)   =   p (k)  , the number of unordered partitions of the integer k . 
 
 k 1      2      3       4        5        6         7        8        9       10       11 12 
 p(k) 1      2     3       5        7       11      15       22       30       42   56      77 
 
The number of factorizations of a natural number depends only on the specification of the set 

of exponents of its prime factors.  Thus 
 
 36 2 3 3025 5 112 3 2 2 and  
 

both have the same number (9) of factorizations. 
 
Now, z k( )  is a type of overcounting function because it measures the number of times each 

term of the form k s  appears when the product (10.1) is extended over natural numbers  2 
instead of just over primes p: 
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Further Partition Results 
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This follows from Euler’s generating function P (x ) for the partition numbers p (n ): 
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If q(n) is the number of partitions of n into distinct parts, then  
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8. Remarks 

 
We observe that the idea of computing a sum by including too many summands and then 

subtracting the excess is a familiar one in combinatorics, notably in the Principle of Inclusion-
Exclusion. 

 


