
Matchmaking among Heterogeneous Agents on the Internet�

Katia Sycara, Matthias Klusch, Seth Wido�

The Robotics Institute, Carnegie Mellon University, Pittsburgh, USA.

fkatia, klusch, swido�g@cs.cmu.edu

Jianguo Lu

Computer Science Department, University of Toronto, CA.

jglu@cs.toronto.edu

Abstract

The Internet not only provides data for users to browse,

but also databases to query, and software agents to run.

Due to the exponential increase of deployed agents on the

Internet, automating the search and selection of relevant

agents is essential for both users and collaboration among

di�erent software agents. This paper �rst describes the

agent capability description language Larks. Then we

will discuss the matchmaking process using Larks and

give a complete working scenario. The paper concludes

with comparing our language and the matchmaking pro-

cess with related works. We have implemented Larks

and the associated powerful matchmaking process, and

are currently incorporating it within our RETSINAmulti-

agent framework (Sycara et al. 1996).

1 Introduction

The Internet not only provides data for users to
browse in the Web, but also heterogeneous databases
to query, and software agents to run. Due to the ex-
ponential increase of deployed agents on the Internet,
automating the searching and selection of relevant
agents is essential for both users and the software
agent society in several ways. Firstly, novice users in
Cyberspace may have no idea where to �nd a service,
and what agents are available for performing a task.

�This research has been sponsored in part by O�ce of Naval
Research grant N-00014-96-16-1-1222.

Secondly, even experienced users can't be aware of ev-
ery change on the Internet. Relevant agents may ap-
pear and disappear over time. Thirdly, as the number
and sophistication of agents on the Internet increase,
there is an obvious need for standardized, meaning-
ful communication among agents to enable them to
perform collaborative task execution.

To facilitate the searching and interoperation
between agents on the Internet, we proposed
the RETSINA multi-agent infrastructure framework
(Sycara et al. 1996). In this framework, we
distinguished two general agent categories: service
providers and service requester agents. Service
providers provide some type of service, such as �nd-
ing information, or performing some particular do-
main speci�c problem solving (e.g., number sorting).
Requester agents need provider agents to perform
some service for them. Since the Internet is an open
environment where information sources, communica-
tion links, and agents themselves may appear and dis-
appear unpredictably, there is a need for some means
to help requester agents �nd providers. Agents that
help locate other agents are called middle agents.

We have identi�ed di�erent types of middle agents
on the Internet, such as matchmakers (yellow page
services), brokers, billboards, etc., and experimen-
tally evaluated di�erent protocols for interoperation
between providers, requesters, and various types of
middle agents (Decker, Sycara and Williamson 1997).
We have also developed protocols for distributed
matchmaking (Jha et al. 1998). Matchmaking is the

 LARKS Protocol
 for providing
 the service

Matchmaker Agent x

AdvertisementDB
ConceptDB
AuxiliaryDB

Requester Agent
Provider Agent 1

Provider Agent n ConceptDB 1

ConceptDB n

Matching

Service Request
in LARKS

Result-of-Matching

Process Request
on Local IS IS

ISIS?

Capability Descriptions
in LARKS

Figure 1: Matchmaking using Larks: An Overview

process of �nding an appropriate provider through
a middle agent, and has the following general form
(Figure 1):

� Provider agents advertise their capabilities to
middle agents.

� Middle agents store these advertisements.

� A requester asks some middle agent whether it
knows of providers with desired capabilities.

� The middle agent matches the request against
the stored advertisements and returns the result,
a subset of the stored advertisements.

While this process at �rst glance seems very sim-
ple, it is complicated by the fact that providers and
requesters are usually heterogeneous and incapable
of understanding each other. This di�culty gives
rise to the need for a common language for describ-
ing the capabilities and requests of software agents
in a convenient way. In addition, one has to devise
a mechanism for matching descriptions in that lan-
guage. This mechanism can then be used by middle
agents to e�ciently select relevant agents for some
given tasks.

In the following, we �rst describe the agent capa-
bility description language, Larks. Then we will dis-
cuss the matchmaking process using Larks and give
a complete working scenario. The paper concludes
with comparing our language and the matchmaking
process with related works. We have implemented
Larks and the associated powerful matchmaking
process, and are currently incorporating it within
our RETSINA multi-agent infrastructure framework
(Sycara et al. 1996).

2 The Agent Capability De-

scription Language Larks

2.1 Desiderata for an Agent Capabil-
ity Description Language

There is an obvious need to describe agent capabili-
ties in a common language before any advertisement,
request, or even matchmaking among the agents can
take place. In fact, the formal description of capa-
bilities is one of the di�cult problems in the area of
software engineering and AI. Some of the main de-
sired features of such a agent capability description
language (ACDL) are the following:

� Expressiveness The language should be ex-
pressive enough to represent not only data and
knowledge, but also the meaning of program
code. Agent capabilities should be described at
an abstract rather than implementation level.
Most existing agents should be distinguishable
by their descriptions in this language.

� Inferences. Inferences on descriptions written
in this language should be supported. Auto-
mated reasoning and comparison on the descrip-
tions should be possible and e�cient.

� Ease of Use. Descriptions should not only be
easy to read and understand, but also easy to
write by the user. The language should support
the use of domain or commonontologies for spec-
ifying agents capabilities.

� Application in the Web. One of the main ap-
plication domains for the language is the speci�-
cation of advertisements and requests of agents
on the Web. The language allows for automated
exchange and processing of information among
these agents.

There are many program description languages,
like Z, to describe the functionalities of programs.
These languages contain too much detail to be useful
for the searching purpose. Also reading and writ-
ing speci�cations in these languages require sophis-
ticated training. On the other hand, the interface
de�nition languages, like IDL and WIDL, go to the
other extreme by completely omitting the functional
descriptions of the services. Only the input and out-
put information is provided.

In AI, knowledge description languages like KIF
are meant to describe the knowledge instead of the
actions of a service. The action representation for-
malisms like STRIPS are too restrictive to repre-
sent complicated services. Some agent communica-
tion languages like KQML (Finin et al. 1994) and
FIPA ACL concentrate on the communication pro-
tocals (message types) between agents but leave the
content part of the language unspeci�ed.

In Internet computing, various description formats
are being proposed, notably the WIDL and the Re-
source Description Framework (RDF). Although the
RDF also aims at the interoperablity between Web
applications, it is intended to be a basis for describ-
ing metadata. RDF allowes di�erent vendors to de-
scribe the properties and relations between resources
on the Web. That enables other programs, like Web
robots, to easily extract relevant information, and to
build a graph structure of the resources available on
the Web, without the need to give any speci�c infor-
mation. However, the description does not describe
the functionalities of the Web services.

Since none of those languages satis�es our re-
quirements, we propose an ACDL, called Larks

(Language for Advertisement and Request for
Knowledge Sharing), that enables for advertising, re-
questing and matching agent capabilities.

2.2 Speci�cation in Larks

A speci�cation in Larks is a frame with the following
slot structure.

Context Context of speci�cation
Types Declaration of used

variable types
Input Declaration of

input variables
Output Declaration of

output variables
InConstraints Constraints on

input variables
OutConstraints Constraints on

output variables
ConcDescriptions Ontological descriptions

of used words
TextDescription Textual Description of

speci�cation

The frame slot types have the following meaning.

� Context: The context of the speci�cation in the
local domain of the agent.

� Types: Optional de�nition of the data types
used in the speci�cation.

� Input and Output: Input/output variable dec-
larations for the speci�cation. In addition to the
usual type declarations, there may also be con-
cept attachments to disambiguate types of the
same name. The concept itself is de�ned in the
concept description slot ConcDescriptions.

� InConstraints and OutConstraints: Logical
constraints on input/output variables that ap-
pear in the input/output declaration part. The
constraints are described as Horn clauses.

� ConcDesriptions: Optional description of the
meaning of words used in the speci�cation. The
description relies on concepts in a given local do-
main ontology. Attachement of a concept C to a
word w in any of the slots above is done in the
form: w*C. That means that the concept C is the
ontological description of the word w. The con-
cept C is included in the slot ConcDescriptions
if not already sent to the matchmaker.

� TextDescription: Optional, textual descrip-
tion of the meaning of the speci�cation as a re-
quest for or advertisement of agent capabilities.
In addition, the meaning of input and output
declaration, type and context part of the spec-
i�cation may be described by attaching textual
comments.

Every speci�cation in Larks can be interpreted as
an advertisement as well as a request; the speci�ca-
tion's role depends on the agent's purpose for sending
it to a matchmaker agent. Every Larks speci�cation
must be wrapped by the sending agent in an appro-
priate KQML message1 that indicates if the message
content is to be treated as a request or an advertise-
ment.

2.3 Using Domain Knowledge in
Larks

Larks o�ers the option to use application domain
knowledge in any advertisement or request. This
is done by using a local ontology for describing the
meaning of a word in a Larks speci�cation. Local
ontologies can be formally de�ned using concept lan-
guages such as Itl.
The main bene�ts of providing a local ontology

are twofold: (1) the user can specify in more detail
what's being requested or advertised, and (2) the
matchmaker agent is able to make automated
inferences on these additional semantic descrip-
tions while matching Larks speci�cations, thereby
improving the overall quality of the matching process.

Example 2.1: Speci�cation in Larks

We did apply the matchmaking process using Larks in
the application domain of air combat missions. As an
example for speci�cation consider the following request
'ReqAirMissions'. The request is to �nd an agent which
is capable to give information on deployed air combat
missions launched in a given time interval. The domain
ontology is supposed to be written in Itl.

1Although the current implementation supports agent mes-
sages in KQML, LARKS is independent of any communication
language or set of performatives/speech acts.

ReqAirMissions

Context Attack, Mission*AirMission
Types Date =

(mm: Int, dd: Int, yy: Int),
DeployedMission =
ListOf(mType: String,
mID:StringkInt)

Input sd: Date, ed: Date

Output missions: Mission
InConstraints sd <= ed.
OutConstraints deployed(mID),

launchedAfter(mID,sd),
launchedBefore(mID,ed).

ConcDescriptions AirMission =
(and Mission
(atleast 1 has-airplane)
(all has-airplane Airplane)
(all has-MissionType
aset(AWAC,CAP,DCA)))

TextDescription capable of providing
information on
deployed air combat missions
launched in a given time
interval

�

3 The Matchmaking Process

Using Larks

3.1 Di�erent Types of Matching in
Larks

Agent capability matching is the process of deter-
mining whether an advertisement registered in the
matchmakermatches a request. Before we go into the
details of the matchmaking process, we should clarify
the ways in which two speci�cations can match.

� Exact MatchThe most accurate type of match-
ing is when both descriptions are equivalent, by
being literally equal, equal when the variables
are renamed, or equal by logical inference. This
type of matching is the most restrictive one.

� Plug-In Match A less accurate but most useful
type of match is the plug-in match. In a plug-in

match, the advertised input types are not more
constrained than the requested input types, and
the advertised output types are not less con-
strained than the requested output types. A ser-
vice described by a plug-in advertisement for a
request will not demand more or more speci�c
input parameters than the requester can supply,
and will not return fewer or more general output
parameters than the requester needs. Hence the
requester submits a subset of its input parate-
mers to get in return a superset of the output
parameters it needs. Exact match is a special
case of plug-in match, that is, wherever two de-
scriptions are an exact match, they are also a
plug-in match.

A simple example of a plug-in match is between
a request to sort a list of integers and an adver-
tisement of an agent that can sort both lists of
integers or strings. This example is elaborated
on in section 4.

� Relaxed Match The least accurate type of
match is the relaxed match. A relaxed matching
process will not return advertised services that
can be immediately used by the requester, but
instead it returns the subset of advertisements
whose distance from the request is less than some
supplied threshold. Thus the requester obtains a
survey of the kinds of similar advertised services
that have been registered with the matchmaker.

For a request describing a service to locate Com-
paq computer dealers in a state, a relaxed match
might return an advertisement describing a ser-
vice that returns a dealer location and price
given a Compaq computer model.

Di�erent users in di�erent situations may want to
employ di�erent types of matches. Thus the match-
maker agent supports several kinds of �lters, which
have di�erent criteria for determining if advertise-
ments and requests match.

3.2 The Filtering Stages of the Match-
making Process

The matching engine of the matchmaker agent con-
tains �ve di�erent �lters:

1. Context matching,

2. Pro�le comparison,

3. Similarity matching,

4. Signature matching, and

5. Constraint matching.

The �rst three �lters are meant for relaxed match-
ing, and the signature and constraint matching �lter
are meant for plug-in matching 2. On the basis of
the given notions of matching we implemented four
di�erent modes of matching for the matchmaker:

1. Complete Matching Mode. All �lters are
considered.

2. Relaxed Matching Mode. The context, pro-
�le, and similarity matching is done.

3. Pro�le Matching Mode. Only the context
matching and comparison of pro�les is per-
formed.

4. Plug-In Matching Mode. In this mode, the
matchmaker performs the signature and con-
straint matching only.

Users may select any of these modes or combina-
tion of these �lters on demand. For example, when
e�ciency is the major concern, a user might select
only the context and pro�le �lters. On the other
hand, when a user or agent wants to �nd agents that
plug-in match, then the matchmaking process would
be con�gured with signature and constraint �lters.
We will now describe each �lter in more detail.

2The computational costs of these �lters are in increasing
order.

3.2.1 Context Filter

Any matching of two speci�cations has to be in an
appropriate context. In Larks to deal with restrict-
ing the advertisement matching space to those in the
same domain as the request, each speci�cation sup-
plies a list of key words meant to describe the domain
of the service.
When comparing two speci�cations it is assumed

that their domains are the same (or at least su�-
ciently similar) as long as (1) the real-valued dis-
tances between the roots of these words do not exceed
a given threshold and (2) subsumption relations be-
tween the attached concepts of the most similarwords
are the same. The matching process only proceeds if
both conditions hold.

3.2.2 Pro�le Filter

Although context matching is e�cient, it does not
consider the whole speci�cation itself. This is done
with a pro�le �lter that compares two Larks speci-
�cations by using the TF-IDF technique (Salton and
Wong 1975) from the domain of information retrieval.
Each speci�cation in Larks is treated as a doc-

ument, and each word w in a document Req is
weighted for that document in the following way. The
number of times w occurs throughout all documents
in the matchmaker's advertisement database is called
the document frequency | df(w) | of w.
Thus for a given document d, the relevance of d

for word w is proportional to the number of times w
occurs in d| wf(w; d) | and inversely proportional
to df(w). A weight h(w; d) for a word in a document
d out of a set D of documents denotes the signi�-
cance of the classi�cation of w for d, and is de�ned
as follows:

h(w; d) = wf(w; d) � log(jDj
df(w)).

The weighted keyword representation wkv(d; V)
of a document d contains the weight h(w; d) as an
element for every word w in a given dictionary V .
Since most dictionaries provide a huge vocabulary,
we cut down the dimension of the vector by using
a �xed set of appropriate keywords determined by

heuristics and the set of keywords in Larks itself.

The similarity dps(Req;Ad) of a request Req and
an advertisement Ad under consideration is then cal-
culated by :

dps(Req;Ad) =
Req � Ad
jReqj � jAdj

where Req � Ad denotes the inner product of the
weighted keyword vectors. If the value dps(Req;Ad)
exceeds a given threshold � 2 R, the matching
process continues with the following steps.

3.2.3 Similarity Filter

The pro�le �lter has two drawbacks. First, it does
not consider the structure of the description. That
means the �lter, for example, is not able to di�eren-
tiate among input and output declarations of a spec-
i�cation. Second, pro�le comparison does not rely on
the semantics of words in a document. Thus the �l-
ter is not able to recognize that the word pair (Com-
puter, Notebook), for example, should have a closer
distance than the pair (Computer, Book).
Computation of similarity distance is a combina-

tion of distance values as calculated for pairs of input
and output declarations, and input and output con-
straints. Each of these distance values is computed
in terms of the distance between concepts and words
that occur in their respective speci�cation section.
The values are computed at the time of advertisement
submittal and stored in the matchmaker database.
Word distance is computed using the trigger-pair
model (Rosen�eld 1994). If two words are signi�-
cantly co-related, then they are considered trigger-
pairs, and the value of the co-relation is domain spe-
ci�c. In the current implementation we use the Wall
Street Journal corpus of one million word pairs to
compute the word distance. The distance computa-
tion between concepts is discussed in section 3.3.

3.2.4 Signature and Constraint Filters

The similarity �lter takes into consideration the se-
mantics of individual words in the description. How-
ever, it does not take the meaning of constraints in a

Larks speci�cation into account. A more sophisti-
cated semantical matching is needed. This is done in
our matchmaking process by the signature and con-
straint �lters. The two �lters are designed to work
together to look for a so-called plug-in match.
Signature matching checks if the signatures of in-

put and output declarations match. It is performed
by a set of subtype inference rules as well as concept
subsumption testing (see (Sycara, Lu and Klusch
1998) for details).
In software engineering it is proven that a com-

ponent description Desc2 'plug-in matches' another
description Desc1 if

� Their signatures match.

� InConstraint of Desc1 implies the InConstraints
of Desc2, i.e., for every clause C1 in the set of
input constraints of Spec1 there is a clause C2
in the set of input constraint of Spec2 such that
C1 �� C2.

� OutConstraints of Desct2 implies the OutCon-
straints of Desc1, i.e., for every clause C2 in
the set of output constraints of Spec2 there is
a clause C1 in the set of output constraints of
Spec1 such that C2 �� C1.

where �� denotes the �-subsumption[12] relation be-
tween de�nite program clauses.
The main problem in performing plug-in matching

is that the logical implication between constraints is
not decidable for �rst order predicate logic, and not
even for an arbitrary set of Horn clauses. To make
the matching process tractable and feasible we use
the �-subsumption relation (Muggleton and De Raedt
1994).

3.3 Concept Subsumption Checking

Concept subsumption relationships and concept dis-
tances are frequently used in the matching engine,
especially in the similarity, signature, and constraint
�lters. These relations are computed at the time each
advertisement is submitted and stored in the Concept
Database.
A concept C subsumes another concept C0 if the

extension of C0 is a subset of C. This means that the

logical constraints de�ned in the term of the concept
C0 logically imply those of the more general concept
C.

Any concept language is decidable if concept sub-
sumption between any two concepts de�ned in that
language can be determined. The concept language
Itl we use is NP-complete decidable. We use an
incomplete inference algorithm for computing sub-
sumption relations between concepts in Itl

3. For
the mechanism of subsumption computation refer to,
e.g., (Smolka and Schmidt-Schauss 1991).

3.4 Computation of Distances Among
Concepts

For matchmaking, the identi�cation of relations other
than subsumption between concepts is very useful be-
cause it promotes a deeper semantic understanding.
Moreover, since we've restricted the expressiveness
of the concept language Itl in order to boost per-
formance, we need some way to express additional
associations between concepts.

To express these associations we use a weighted
associative network (AN), a semantic network with
directed edges between concept nodes. The type of
edge between two concepts denotes their binary rela-
tion, and edges are labeled with a numerical weight
(interpreted as a fuzzy number). The weight indi-
cates the strength of belief in that relation, since its
real world semantics may vary.

In our implementation we created an associative
network by using the concept subsumption hierarchy
and additional associations set by the user. Distance
between two concepts C;C0 in an AN is computed
as the strength ofthe shortest path between C and
C0 on the basis of triangular norms (see (Fankhauser
and Neuhold 1992) for details).

3Using the well-known tradeo�, we compromise expressive-
ness for tractability in our subsumption algorithm, which is
correct but incomplete.

4 Example of Matchmaking

Using Larks

Consider the following simple speci�cations 'Inte-
gerSort' and 'GenericSort', a request for an agent
that sorts integer numbers, and an advertisement for
an agent that is capable of sorting real numbers and
strings.

IntegerSort

Context Sort
Types

Input xs: ListOf Integer;

Output ys: ListOf Integer;
InConstraints le(length(xs),100).
OutConstraints before(x,y,ys) ge(x,y).

in(x,ys) in(x,xs).
ConcDescriptions

TextDescription sorting of list of
integer numbers

GenericSort

Context Sorting
Types

Input xs: ListOf Real j String;
Output ys: ListOf Real j String;
InConstraints

OutConstraints before(x,y,ys) ge(x,y).
before(x,y,ys) preceeds(x,y).
in(x,ys) in(x,xs).

ConcDescriptions

TextDescription sorting of list of
real numbers or string

Assume that the provider agent submits the
advertisement 'GenericSort' to the matchmaker,
and that later the requester submits the request
'IntegerSort'.

Context Matching

Both words in the Context declaration parts are suf-
�ciently similar since they share the same root. We
have no referenced concepts to check for terminologically
equity, thus the matching process proceeds with the
following two �ltering stages.

Comparison of Pro�les

According to the result of the TF-IDF procedure both
speci�cations are su�ciently similar.

Similarity Matching

Using the current auxiliary database for word distance
values, similarity matching of constraints yields, for
example:

le(length(xs),100)) null = 1.0
before(x,y,ys) ge(x,y) in(x,ys) in(x,xs) = 0.5729

The similarity of both speci�cations is computed as:
Sim(IntegerSort;GenericSort) = 0:64.

Signature Matching

Consider the signatures t1= (ListOf Integer) and t2=
(ListOf RealjString). Following the subtype inference
rules 9., 4., and 1., it holds that t1 �st t2, but not vice
versa.

Constraint Matching

The advertisement 'GenericSort' semantically plugs into

the request 'IntegerSort', because the input constraints

of 'IntegerSort' are �-subsumed by those of 'Generic-

Sort', and the output constraints of 'GenericSort' are �-

subsumed by those of 'IntegerSort'. Please note that the

reverse does not hold.

Figure 2: The User Interface of the Matchmaker
Agent.

Figure 2 shows the user interface of the imple-
mented matchmaker agent. To help visualize the
matchmaking process, we devised a user interface
that traces the path of the advertisement result set
for a request through the matchmaker's �lters. The
�lters can be con�gured by selecting the checkboxes
beneath the desired �lters | disabled �lters are
darkened and bypassed | or by pressing one of the
buttons for a prede�ned mode. As the result set
passes from one �lter to the next, the �lter's outline
highlights, the number above the �lter increments
as it considers an advertisement, and the number
above its output arrow increments as advertisements
successfully pass through the �lter. Pushing the
buttons above each inter-�lter arrow reveals the
result advertisement set for the preceding �lter.

5 Related Work

Agent matchmaking has been actively studied since
the inception of software agent research. The earliest
matchmaker we are aware of is the ABSI facilitator,
which is based on the KQML speci�cation and uses
the KIF as the content language. The KIF expression
is basically treated like Horn clauses. The matching
between the advertisement and request expressed in
KIF is the simple uni�cation with the equality pred-
icate.
The SHADE and COINS (Kuokka and Harrada

1995) are matchmakers based on KQML. The content
language of COINS allows for free text and its match-
ing algorithm utilizes the TF-IDF like the pro�le �l-
ter. The context language of the SHADE match-
maker consists of two parts, one is a subset of KIF,
the other is a structured logic representation called
MAX. MAX use logic frames to declaratively store
knowledge. SHADE uses a frame-like representation
and matching relies on a Prolog-like uni�cation pro-
cess.

A more recent service broker-based information
system is InfoSleuth (Jacobs and Shea 1996; Nodine
1998). The content language supported by InfoS-
leuth is KIF and the deductive database language
is LDL++, which has semantics similar to Prolog.

The constraints for both the user request and the re-
source data are speci�ed in terms of some given cen-
tral ontology. It is the use of this common vocabu-
lary that enables the dynamicmatching of requests to
the available resources. The advertisements specify
agents' capabilities in terms of one or more ontologies.
The constraint matching is an intersection function
between the user query and the data resource con-
straints. If the conjunction of all the user constraints
with all the resource constraints is satis�able, then
the resource contains data that are relevant to the
user request.
Broker and matchmaker agents can be seen as a

kind of so-called mediator agents among heteroge-
neous information systems (Vassalos and Papakon-
stantinou 1997; Ambite and Knoblock 1997). Each
local information system is 'wrapped' by a wrapper
agent, and their capabilities are described in two lev-
els. The �rst is what they can provide, which is
usually described in the local data model and local
database schema. The second is what kind of queries
they can answer, which is usually a subset of SQL.
The set of queries a service can accept is described
using a grammar-like notation. Matching between
the query and the service is simple: it just decides
whether the query can be generated by this gram-
mar. This area emphasizes the planning of database
queries according to heterogeneous information sys-
tems not providing complete SQL services. Those
systems are not designed to be searched for among
a vast number of Internet resources. The description
of capabilities and matching are not only studied in
the agent community, but also in other related areas.

5.1 Works Related with Capability
Description

The following approaches provide solutions for the
problem of capability and service description match-
ing:

1. Software speci�cation techniques.
Agents are computer programs that have some
speci�c characteristics. There is numerous work
on software speci�cations in formal methods,
like the model-oriented VDM and Z[14], or the

algebra-oriented Larch. Although these lan-
guages are good at describing computer pro-
grams in a precise way, the speci�cation usu-
ally contains too many details to be of interest
to other agents. The complexity of these lan-
guages prohibits e�ective semantic comparison
between the speci�cations. Reading and writ-
ing these speci�cations also requires substantial
training.

2. Action representation formalisms.
Agent capability can be seen as the actions that
the agents perform. There are a number of ac-
tion representation formalisms in AI planning,
like the classical one, STRIPS. Action represen-
tation formalisms are inadequate for our task
since they are propositional and do not involve
data types.

3. Concept languages for knowledge representation.
There are various terminological knowledge rep-
resentation languages. However, an ontology it-
self does not describe any capability. On the
other hand, it provides auxiliary concepts to as-
sist the speci�cation of agent capabilities.

4. Database query capability description.

The database query capability description tech-
nique in (Vassalos and Papakonstantinou 1997),
was developed as an attempt to describe the in-
formation sources on the Internet, such that an
automated integration of information would be
possible. In this approach the information source
is modeled as a database with restricted query-
ing capabilities.

5.2 Works Related to Service Re-

trieval

In software component search techniques, (Zaremski
and Wing 1995) de�nes several notions of matching,
including exact and plug-in matching, and formally
proves the relationship between those matches. The
work of (Goguen et al. 1996) proposes to use a se-
quence of �lters to search for software components to
increase the e�ciency of the search process. In (Jen

and Cheng 1995) the distance between similar speci�-
cations is computed. This work is based on algebraic
speci�cation of computer programs. No concept de-
scriptions and concept hierarchies are considered.
Concerning Web resource search techniques, the

work (Li and Danzig 1997) proposes a method to
look for better search engines that may provide more
relevant data for the user concerns, and ranks those
search engines according to their relevance to a user's
query. They propose a directory of services to record
descriptions for each information server. A user sends
a query to a directory of services, which determines
and ranks the servers that are relevant to the user's
request. Both the query and the server are described
using boolean expressions. The search method is
based on the similarity measure between the two
boolean expressions.

6 Conclusion

The Internet is an open system where heterogeneous
agents can appear and disappear dynamically. As the
number of agents on the Internet increases, there is
a need to de�ne middle agents to help agents locate
other agents that provide requested services. In prior
research we have identi�ed a variety of middle agent
types, their protocols and their performance charac-
teristics. Matchmaking is the process that brings
requester and service provider agents together. A
provider agent advertises its know-how or capabili-
ties to a middle agent, which stores the advertise-
ments. An agent that desires a particular service
sends a service request to a middle agent, which sub-
sequently matches the request against its stored ad-
vertisements. The middle agent communicates the
results to the requester (the way this happens de-
pends on the type of middle agent involved).
We have also de�ned protocols that allow more

than one middle agent to maintain consistency in
their advertisement databases. Since matchmaking
is usually done dynamically and over large networks,
it must be e�cient. There is an obvious trade-o�
between the quality and e�ciency of service match-
making on the Internet.
We have de�ned and implemented a language

called Larks for agent advertisements and requests,
and a matchmaking process that uses Larks. Larks
judiciously balances language expressiveness and ef-
�ciency in matching. The Larks matchmaking pro-
cess performs both syntactic and semantic matching,
and in addition allows the speci�cation of concepts
(local ontologies) via ITL, a concept language.
The matching process uses �ve �lters: context

matching, pro�le comparison, similarity matching,
signature matching and constraint matching. Dif-
ferent degrees of partial matching can result from
utilizing di�erent combinations of these �lters. The
selection of �lters to apply is under the control of
the user (or the requester agent).

Acknowledgement: We thank Davide Brugali,
Somesh Jha and Anandeep Pannu for their helpful
discussions in this project.

References

[1] Ambite, J.L., and Knoblock, C.A. 1997. Planning
by Rewriting: E�ciently Generating High-Quality
Plans. In Proceedings of the Fourteenth National
Conference on Arti�cial Intelligence, Providence, RI.

[2] Decker, K., Sycara, K., and Williamson, M. 1997.
Middle-Agents for the Internet. In Proceedings of
15th IJCAI Conference, pp. 578-583, Nagoya, Japan.

[3] Fankhauser, P., and Neuhold, E.J. 1992. Knowl-
edge based integration of heterogeneous databases.
In Proceedings of IFIP Conference DS-5 Semantics
of Interoperable Database Systems, Lorne, Victoria,
Australia, 1992.

[4] Finin, T., Fritzson, R., McKay, D., and McEntire,
R. 1994. KQML as an Agent Communication Lan-
guage. In Proceedings 3rd International Conference

on Information and Knowledge Management CIKM-

94, ACM Press.

[5] Goguen, J., Nguyen, D., Meseguer, J., Luqi, Zhang,
D., and Berzins, V. 1996. Software component
search. Journal of Systems Integration, 6:93-134.

[6] Jacobs, N., and Shea, R. 1996. The role of Java in In-
foSleuth: Agent-based exploitation of heterogeneous
information ressources. In Proceedings of Intranet-96
Java Developers Conference.

[7] Jha, S., Chalasani, P., Shehory, O., and Sycara, K.
1998. A Formal Treatment of Distributed Match-
making. In Proceedings of the Second International
conference on Autonomous Agents (Agents 98), Min-
neapolis, MN.

[8] Jeng, J-J., and Cheng, B.H.C 1995. Speci�cation
matching for software reuse: a foundation. In Pro-
ceedings of the ACM SIGSOFT Symposium on Soft-
ware Reusability, ACM Software Engineering Note.

[9] Kracker, M. 1992. A fuzzy concept network. In Pro-

ceedings of IEEE International Conference on Fuzzy

Systems, IEEE Computer Society Press.

[10] Kuokka, D., and Harrada, L., 1995. On using KQML
for Matchmaking. In Proceedings of 3rd Intl. Conf.

on Information and Knowledge Management CIKM-

95, 239-45, AAAI/MIT Press.

[11] Li, S.H., and Danzig, P.B. 1997. Boolean Similarity
Measures for Resource Discovery. IEEE Transactions

on Knowledge and Data Engineering, 9(6).

[12] Muggleton, S., and De Raedt, L. 1994. Inductive
logic programming: theory and methods. Journal of
Logic Programming, 19(20):629{679.

[13] Nodine, M. 1998. The InfoSleuth Agent System.
In M. Klusch and G. Weiss. eds. Proceedings of

Second International Workshop on Cooperative In-

formaiton Agents CIA-98, Paris, France, Springer,
LNAI 1435:19-20.

[14] Potter, B., Sinclair, J., and Till, D.. Introduction to

Formal Speci�cation and Z. Prentice-Hall Interna-
tional Series in Computer Science.

[15] Resource Description Framework (RDF) Schema
Speci�cation. http://www.w3.org/TR/WD-rdf-
schema/.

[16] Rosen�eld, R. 1994. Adaptive statistic language
model. PhD diss., Carnegie Mellon University, Pitts-
burgh, USA.

[17] Salton, G., and Wong, A. 1975. A vector space
model for automatic indexing. Communications of

the ACM, 18:613-620.

[18] Sycara, K., Lu, J., and Klusch, M. 1998. Inter-
operability among Heterogeneous Software Agents
on the Internet. Technical Report CMU-RI-TR-98-
22, Robotics Institute, Carnegie Mellon University,
Pittsburgh PA (USA).

[19] Sycara, K., Decker, K., Pannu, A., Williamson, M.,
and Zeng, D. 1996. Distributed Intelligent Agents.
IEEE Expert, pp. 36-46.

[20] Smolka, G., and Schmidt-Schauss, M. 1991. Attribu-
tive concept description with complements. AI Jour-
nal, 48.

[21] Wickler, G. 1998. Using Expressive and Flex-
ible Action Representations to Reason about
Capabilities for Intelligent Agent Cooperation.
http://www.dai.ed.ac.uk/students/gw/phd/story.html

[22] Vassalos, V., Papakonstantinou, Y. 1997. Describ-
ing and Using Query Capabilities of Heterogeneous
Sources. In Proceedings of International Conference
on Very Large Database Systems VLDB-97. available
at http://www-cse.ucsd.edu/ yannis/papers/

[23] Zaremski, A.M., and Wing, J.M. 1995. Speci�ca-
tion matching of software components. Technical Re-
port CMU-CS-95-127, School of Computer Science,
Carnegie Mellon University, Pittsburgh PA (USA).

