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ARTIFICIAL INTELLIGENCE AS EVIDENCE1 

Paul W. Grimm, Maura R. Grossman & Gordon V. Cormack 
 

ABSTRACT— This article explores issues that govern the admissibility 

of Artificial Intelligence (“AI”) applications in civil and criminal cases, from 

the perspective of a federal trial judge and two computer scientists, one of 

whom also is an experienced attorney.  It provides a detailed 

yet intelligible discussion of what AI is and how it works, a history of its 

development, and a description of the wide variety of functions that it is 

designed to accomplish, stressing that AI applications are ubiquitous,  

both in the private and public sectors.  Applications today include:  health 

care, education, employment-related decision-making, finance, law  

enforcement, and the legal profession.  The article underscores the  

importance of determining the validity of an AI application (i.e., how  

accurately the AI measures, classifies, or predicts what it is designed to), 

as well as its reliability (i.e., the consistency with which the AI produces 

accurate results when applied to the same or substantially similar  

circumstances), in deciding whether it should be admitted into evidence 

in civil and criminal cases.  The article further discusses factors that can 

affect the validity and reliability of AI evidence, including bias of various  

types, “function creep,” lack of transparency and explainability, and the 

sufficiency of the objective testing of AI applications before they are 

released for public use.  The article next provides an in-depth discussion of 

the evidentiary principles that govern whether AI evidence should be 

admitted in court cases, a topic which, at present, is not the subject of 

comprehensive analysis in decisional law.  The focus of this discussion is on 

providing a step-by-step analysis of the most important issues, and the 

factors that affect decisions on whether to admit AI evidence.  Finally, the 

article concludes with a discussion of practical suggestions intended to assist 

lawyers and judges as they are called upon to introduce, object to, or decide 

on whether to admit AI evidence.  

 

 

 1 Hon. Paul W. Grimm is a United States District Judge for the District of Maryland, and an adjunct 

professor at both the University of Maryland Carey School of Law and the University of Baltimore School 

of Law. Maura R. Grossman, J.D., Ph.D., is a Research Professor, and Gordon V. Cormack, Ph.D., is a 

Professor, in the David R. Cheriton School of Computer Science at the University of Waterloo. Professor 

Grossman is also an affiliate faculty member at the Vector Institute for Artificial Intelligence. Her work 

is funded, in part, by the National Sciences and Engineering Council of Canada (“NESERC”). The 

opinions expressed in this article are the authors’ own, and do not necessarily reflect the views of the 

institutions or organizations with which they are affiliated. 
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INTRODUCTION 

We live in an increasingly automated world. We use search engines to 

find much of the information we need for work and leisure, navigate our way 

to work using Waze or Google Maps, bank electronically without even the 

thought of entering an actual bank, instruct voice-activated personal 

assistants like Alexa or Siri to help us in countless ways, and socialize online 

without the inconvenience of having to actually be social. Soon, we hear, our 

cars will be driving themselves, and it is only a matter of time before 

airplanes will be able to fly themselves from one place to another without 

the need for human pilots. 
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Software applications, powered by seemingly omniscient and 

omnipotent “artificial intelligence” algorithms,2 are used to diagnose and 

treat patients,3 evaluate applicants for employment or promotion,4 determine 

who is a good risk for a bank loan or credit card,5 determine where police 

departments should deploy officers to most effectively prevent and respond 

to crime,6 recognize faces in a photograph or video and match them to a real 

person,7 forecast which offenders will recidivate,8 and even predict an 

 

 2 An algorithm is defined as “a procedure for solving a mathematical problem . . . in a finite number 

of steps that frequently involves repetition of an operation . . . [and more broadly as] a step-by-step 

procedure for solving a problem or accomplishing some end.” Algorithm, MERRIAM-WEBSTER.COM 

DICTIONARY, https://www.merriam-webster.com/dictionary/algorithm [https://perma.cc/93SR-MGM7]. 

 3 See, e.g., Jonathan G. Richens, Clarán M. Lee & Saurabh Johri, Improving the Accuracy of Medical 

Diagnosis with Causal Machine Learning, 11 NATURE COMMUNICATIONS Article No. 3921 (2020), 

https://www.nature.com/articles/s41467-020-17419-7 [https://perma.cc/VU5Y-PNZQ]; Thomas 

Davenport & Ravi Kalakota, The Potential for Artificial Intelligence in Health Care, 6 FUTURE HEALTH 

J. 94-98 (2019), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616181 [https://perma.cc/42CM-

JFVN]. 

 4 See, e.g., Kumba Sennaar, Machine Learning for Recruiting and Hiring – 6 Current Applications, 

EMERJ (last updated May 20, 2019), https://emerj.com/ai-sector-overviews/machine-learning-for-

recruiting-and-hiring [https://perma.cc/RY7R-WBMH]; Ann Fisher, An Algorithm May Decide Your 

Next Pay Raise, FORTUNE (July 14, 2019), https://fortune.com/2019/07/14/artificial-intelligence-

workplace-ibm-annual-review [https://perma.cc/2QSV-DMBF]. 

 5 See, e.g., Dinesh Bacham & Janet Zhao, Machine Learning: Challenges, Lessons, and Opportunities 

in Credit Risk Modeling, IX Moody’s Analytics Risk Perspectives | Managing Disruption (July 2017), 

https://www.moodysanalytics.com/risk-perspectives-magazine/managing-disruption/spotlight/machine-

learning-challenges-lessons-and-opportunities-in-credit-risk-modeling [https://perma.cc/2537-C7RJ]; 

Rahul Shukla, Prediction of Loan Approval with Machine Learning (Sept. 19, 2020), 

https://medium.com/@rahulshuklawork/prediction-of-loan-approval-with-machine-learning-

539cbd2aad31 [https://perma.cc/ZQ6H-H5MR] (last visited Nov. 15, 2021). 

 6 See, e.g., Steven L. Ostrowski, How Machine Learning Can be a Force Multiplier for Public Safety, 

POLICE1 BY LEXIPOL (Apr. 2, 2020), https://www.police1.com/police-products/police-

technology/articles/how-machine-learning-can-be-a-force-multiplier-for-public-safety-

30AaqNplj9Hq95ap [https://perma.cc/G378-KL3K]; Jonathan Chase et al., Improving Law Enforcement 

Daily Deployment Through Machine Learning-Informed Optimization Under Uncertainty, PROC. OF THE 

28TH INT’L JOIN CONF. ON AI (IJCAI-19) 1-7 (2019), https://www.ijcai.org/proceedings/2019/0806.pdf 

[https://perma.cc/B3UV-FUVL]. 

 7 See, e.g., Ewan, What is Image Recognition?, DEEPOMATIC (January 8, 2019), 

https://deepomatic.com/what-is-image-recognition [https://perma.cc/U68V-SDCD]; James Vincent, FBI 

Used Facial Recognition to Identify Capitol Rioter From His Girlfriend’s Instagram Posts, THE VERGE 

(Apr. 21, 2021), https://www.theverge.com/2021/4/21/22395323/fbi-facial-recognition-us-capital-riots-

tracked-down-suspect [https://perma.cc/R58L-5L3N]. 

 8 See, e.g., Mirilla Zhu, An Algorithmic Jury: Using Artificial Intelligence to Predict Recidivism 

Rates, YALE SCIENTIFIC (May 15, 2020), https://www.yalescientific.org/2020/05/an-algorithmic-jury-

using-artificial-intelligence-to-predict-recidivism-rates/ [https://perma.cc/CGA4-MZ9Q]; Mehdi 

Ghasemi et al., The Application of Machine Learning to a General Risk-Need Assessment Instrument in 

the Prediction of Criminal Recidivism, 48 CRIM. JUSTICE & BEHAVIOR 518–38 (Apr. 2020), 

https://journals.sagepub.com/doi/full/10.1177/0093854820969753 [https://perma.cc/ZYX9-VWTG]; 
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attorney’s chance of winning a lawsuit by analyzing data gathered about the 

presiding judge and opposing counsel.9 

References to Artificial Intelligence are now so ubiquitous that we no 

longer need to use more than the abbreviation “AI” to understand what is 

meant. But there is something inscrutable about AI. We understand it to 

involve software programs powered by complicated mathematical rules 

called “algorithms,” but most of us have never met anyone who has ever 

created a computer algorithm, or who can tell us how they actually work. We 

hear references to “machine learning,” by which we understand that software 

applications are either entirely self-taught or trained—initially by humans—

but eventually are able to teach themselves, and perform tasks far more 

complex than humans can, in but a fraction of the time. 

However mysterious this may be to most of us, AI algorithms are no 

longer the stuff of science fiction or the imagination of high-tech brainiacs. 

They are being used right now, in countless software applications, and in 

increasingly expansive ways, in our personal undertakings, and by 

businesses and governments. For many AI applications, however, very little 

is known about the data they are fed, how they are developed and trained, or 

whether they produce consistently accurate results. And despite the generic 

phrase “artificial intelligence,” this technology is hardly monolithic; there 

are many variants. Some AI applications are “trained” using supervised 

machine learning; others are self-taught through unsupervised machine 

learning, and there are still others that use reinforcement learning.10 Some 

can be differentiated by what they are programmed to do, such as classifying 

or ranking data by its value or relationship to other data, versus others, which 

do regression analysis, by attaching specific values or weight to data in a 

large data set. 

 

 9 See, e.g., LEX MACHINA.COM, https://lexmachina.com [https://perma.cc/F43A-LJDM](AI tool to 

“[p]redict the behavior of courts, judges, lawyers, and parties with Legal Analytics”); Masha Medvedeva, 

Michael Vol & Martijn Wieling, Using Machine Learning to Predict Decisions of the European Court of 

Human Rights, 8 AI AND LAW 237–266 (2020), https://link.springer.com/article/10.1007/s10506-019-

09255-y [https://perma.cc/YS87-JBLJ]. 

 10 In reinforcement learning, an AI system “learns to achieve a goal in an uncertain and potentially 

complex environment. The AI faces a game-like situation. [It] employs trial and error [methods] to come 

up with a solution to the problem. To get the machine to do what the programmer wants, the [AI system] 

gets either rewards or penalties for the actions it performs. Its goal is to maximize the total reward [and 

to minimize the total penalties]. Although the designer sets the reward policy—[in other words, devises] 

the rules of the game—[the designer] gives the model no hints or suggestions about how to solve 

the game. It’s up to the model to figure out how to perform the task to maximize the reward, starting from 

totally random trials” and learn as it goes. See Błażej Osiński & Konrad Budek, What Is Reinforcement 

Learning? The Complete Guide, DEEPSENSE.AI (July 5, 2018), https://deepsense.ai/what-is-

reinforcement-learning-the-complete-guide [https://perma.cc/3USA-7ZGV]. 
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And if AI applications now dominate our lives, it is unavoidable that 

the evidence that will be needed to resolve civil litigation and criminal trials 

will include facts that are generated by this enigmatic technology. Whether 

they want to or not, lawyers seeking to introduce or object to AI evidence, 

and judges who must rule on its admissibility, need to have a working 

knowledge of what AI is and how it works, what it does accurately and 

reliably, and what it does not. Yet, there are few, if any, published court 

opinions that consider the issues regarding AI admissibility in any depth. 

And while there are many articles that raise concerns about privacy, bias in 

data or algorithms, lack of transparency, and the absence of accepted 

governance standards11 with regard to AI evidence, there is a need for a 

practical (i.e., not overly technical or esoteric) overview of both the technical 

and evidentiary issues implicated by AI evidence that is understandable to 

lay persons, lawyers, and judges alike, describing (i) what AI is, (ii) the 

factors that should be considered in evaluating its validity and reliability, and 

(iii) setting forth a systematic framework for addressing the evidentiary 

issues that must be considered when AI evidence is used in court. We have 

written this article from the perspective of two computer scientists (one of 

whom also is an experienced lawyer) and a trial judge. It is our hope that it 

will serve as a useful primer and prove helpful to lawyers and judges who 

must tackle the challenges associated with admissibility of AI evidence. 

We begin by discussing what AI is and provide an overview of its 

origins. We discuss the different types of AI applications and the different 

functions they are designed to accomplish. Next, we illustrate the various 

ways in which AI technology is already in use today and some of the 

concerns about how it is deployed, including the frequent lack of 

transparency in how it was developed and tested. We explain how concerns 

about how programmatic bias and inaccurate assumptions may undermine or 

 

 11 See generally Melissa Hamilton, The Biased Algorithm: Evidence of Disparate Impact on 

Hispanics, 56 AM. CRIM. L. REV. 1553 (2019); Patrick W. Nutter, Comment, Machine Learning 

Evidence: Admissibility and Weight, 21 U. PA J. CONST. L. 919 (2019); Jeff Ward, 10 Things Judges 

Should Know About AI, 103 JUDICATURE 12 (Spring 2019); Andrea Roth, Machine Testimony, 126 YALE 

L.J. 1972 (2017); David Lehr & Paul Ohm, Playing with the Data: What Legal Scholars Should Learn 

About Machine Learning, 51 U.C. DAVIS L. REV. 653 (2017); Michael L. Rich, Machine Learning, 

Automated Suspicion Algorithms, and the Fourth Amendment, 164 U. PA. L. REV. 871 (2016); Harry 

Surden, Machine Learning and Law, 89 WASH. L. REV. 87 (2014); Pamela S. Katz, Expert Robot: Using 

Artificial Intelligence to Assist Judges in Admitting Scientific Expert Testimony, 24 ALB. L.J. SCI. & TECH. 

1 (2014); John Nawara, Machine Learning: Face Recognition Technology Evidence in Criminal Trials, 

49 U. LOUISVILLE L. REV. 601 (2011). It should be noted that one of the authors of this article (Judge 

Grimm) previewed some of the ideas and discussion found in this paper in two pieces published in early 

2021: The Sedona Conference, Commentary on ESI Evidence & Admissibility, Second Ed., 22 SEDONA 

CONF. J. 83, 183–90 & n.237 (2021), and Paul W. Grimm, Practical Considerations for the Admissibility 

of Artificial Intelligence Evidence, 2 MD. B.J. 39 (2021). Both pieces reference this article, which was 

already in draft form, as the original source for the ideas and discussion herein. 
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taint the appropriateness of its use. In the process, we stress the importance 

of two related concepts: validity (or accuracy in performance of the functions 

the technology was programmed to undertake), and reliability (the 

consistency with which the technology produces similar results when used 

in similar circumstances). Next, we discuss the evidentiary rules that must 

be considered in assessing the admissibility of AI evidence in court 

proceedings, and, finally, we conclude with some practical suggestions for 

lawyers and judges. 

I.   WHAT IS “ARTIFICIAL INTELLIGENCE”? 

Artificial Intelligence is the hypothetical ability of a computer to match 

or exceed a human’s performance in tasks requiring cognitive abilities, such 

as perception, language understanding and synthesis, reasoning, creativity, 

and emotion.12 For some specific tasks, such as playing games like chess, 

Jeopardy, or Go, purpose-built computer systems have achieved 

performance rivaling or bettering the world’s best experts, 13 while free or 

consumer-priced commodity chess-playing systems are at least as good as 

the average player.14 For other tasks, such as voice or facial recognition and 

language translation, commonly deployed systems today are arguably as 

good as most people, and possibly better.15 Complex tasks, such as driving 

an automobile or flying an airplane, can now—or will in the near future—be 

accomplished as well by computers as by licensed drivers or pilots.16 

 

 12 See A.M. Turing, I.—Computing Machinery and Intelligence, 59 MIND 433, 460 (1950); John 

McCarthy et al., A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, 

August 31, 1955, reprinted in 27 AI MAG. 12 (2006). 

 13 See Deep Blue versus Gary Kasparov, WIKIPEDIA, 

 https://en.wikipedia.org/w/index.php?title=Deep_Blue_versus_Garry_Kasparov&oldid=990729889 

[https://perma.cc/CA39-K92E]; Jo Best, IBM Watson: The Inside Story of How the Jeopardy-Winning 

Supercomputer Was Born, and What It Wants to Do Next, TECHREPUBLIC (Sept. 9, 2013), 

https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-

supercomputer-was-born-and-what-it-wants-to-do-next [https://perma.cc/YQC6-FZSC]; AlphaGo, 

DEEPMIND, https://deepmind.com/research/case-studies/alphago-the-story-so-far 

[https://perma.cc/DER7-NC5L]. 

 14 See, e.g., Top 6 Best Chess Engines in the World in 2021, ICHESS.NET (June 3, 2021), 

https://www.ichess.net/blog/best-chess-engines [https://perma.cc/BLG2-LZQU]. 

 15 See Norberto Andrade, Computers Are Getting Better Than Humans at Facial Recognition, THE 

ATLANTIC (June 9, 2014), https://www.theatlantic.com/technology/archive/2014/06/bad-news-

computers-are-getting-better-than-we-are-at-facial-recognition/372377 [https://perma.cc/88L7-GAJH]; 

Vanessa Bates Ramirez, A Computer Can Now Translate Languages as Well as a Human, 

SINGULARITYHUB (Oct. 4, 2016), https://singularityhub.com/2016/10/04/a-computer-can-now-translate-

languages-as-well-as-a-human [https://perma.cc/L2U3-356Z]. 

 16 See, e.g., Chris Isidore, Self-Driving Cars Are Already Really Safe, CNN BUS. (Mar. 21, 2018, 

12:07 PM ET), https://money.cnn.com/2018/03/21/technology/self-driving-car-safety/index.html 

[https://perma.cc/ZA7W-E72U]; Eric R. Teoh & David G. Kidd, Rage Against the Machine? Google’s 

Self-Driving Cars Versus Human Drivers, 63 J. SAFETY RSCH. 57, 59 (2017); Aaron Pressman, An F-16 
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Computers can generate original music that is pleasant to the ear,17 as 

well as artificial or altered images, videos, social media personas, and even 

news articles that humans have difficulty distinguishing from ones that are 

real.18 Computers can also predict the near future; in many instances better 

than humans.19 What computers cannot yet do is autonomously mine the 

energy and resources they need to feed themselves and to reproduce.20 

The term “artificial intelligence” or “AI” refers to an aspirational goal 

(or the dystopian outcome) of exploring the limits of computation. The 

examples above of what computers can now do are generally referred to as 

“narrow” or “weak” AI, because they use purpose-built hardware and/or 

software systems that seek to emulate (or better) human performance at a 

single, well-defined task.21 “General” or “strong” AI refers to a computer’s 

ability to rival or exceed human performance at a full complement of 

cognitive tasks, including but not limited to, the ability to sustain itself (i.e., 

the task of go forth and multiply).22 At the time of this writing, the domain of 

 

Pilot Took on A.I. in a Dogfight. Here’s Who Won, FORTUNE (Aug. 20, 2020, 4:40 PM CDT), 

https://fortune.com/2020/08/20/f-16-fighter-pilot-versus-artificial-intelligence-simulation-darpa 

[https://perma.cc/LK6N-WLXD]; Arash Heydarian Pashakhanlou, AI, Autonomy, and Airpower: The 

End of Pilots?, 19 DEF. STUD. 337 (Oct. 12, 2019). 

 17 Listen to some of the musical creations of AIVA at https://www.aiva.ai/creations 

[https://perma.cc/Y7FB-Y9VC]. 

 18 See, e.g., Sophie J. Nightingale et al., Can People Identify Original and Manipulated Photos of 

Real-World Scenes?, 2 COGNITIVE RSCH. 30 (2017); Oscar Schwartz, You Thought Fake News Was Bad? 

Deep Fakes Are Where Truth Goes to Die, GUARDIAN (Nov. 12, 2018, 05.00 EST), 

https://www.theguardian.com/technology/2018/nov/12/deep-fakes-fake-news-truth 

[https://perma.cc/9KZY-EQY3]; Camila Domonoske, Students Have ‘Dismaying’ Inability to Tell Fake 

News from Real, Study Finds, NPR (Nov. 23, 2016, 2:44 PM ET), https://www.npr.org/sections/thetwo-

way/2016/11/23/503129818/study-finds-students-have-dismaying-inability-to-tell-fake-news-from-real 

[https://perma.cc/GG5J-HEMN]. 

 19 See Berkeley J. Dietvorst et al., Algorithm Aversion: People Erroneously Avoid Algorithms After 

Seeing Them Err, 144 J. EXPER. PSYCH. 114 (2015), at 1 (“Research comparing the effectiveness of 

algorithmic and human forecasts shows that algorithms consistently outperform humans. In his book 

Clinical Versus Statistical Prediction: A Theoretical Analysis and Review of the Evidence, Paul Meehl 

(1954) reviewed results from 20 forecasting studies across diverse domains, including academic 

performance and parole violations, and showed that algorithms outperformed their human counterparts”; 

citing additional studies and meta-analyses and concluding that “across the vast majority of forecasting 

tasks, algorithmic forecasts are more accurate than human forecasts”). 

 20 See Kenneth Chang, Can Robots Rule the World? Not Yet, N.Y. TIMES (Sept. 12, 2000), 

https://www.nytimes.com/2000/09/12/science/can-robots-rule-the-world-not-yet.html 

[https://perma.cc/N6MP-S6XT]. But see Big Think, AI Can Now Self-Reproduce—Should Humans Be 

Worried? | Eric Weinstein, YOUTUBE (May 22, 2017),  

https://www.youtube.com/watch?v=Wu8s0tp9yzY [https://perma.cc/G6FY-KRHY]. 

 21 See Jake Frankenfield, Weak AI, INVESTOPEDIA (Feb. 25, 2021), 

https://www.investopedia.com/terms/w/weak-ai.asp [https://perma.cc/87LF-3RVD]. 

 22 See Strong AI, IBM Cloud Education (Aug. 31, 2020), https://www.ibm.com/cloud/learn/strong-

ai [https://perma.cc/ZNQ4-RUTM]. Some futurists recognize a category of AI that exceeds strong AI, 

referred to as “artificial superintelligence” or “super AI,” which “surpasses human intelligence and ability 
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tasks to which computers have been successfully applied—weak AI—along 

with their effectiveness at those tasks, has grown and continues to grow 

apace. Whether or when strong AI will be achieved in the future, and its 

possible consequences, is the subject of vigorous debate among experts,23 a 

subject which is beyond the scope of this paper. Here, we are concerned with 

how the law should analyze and treat (i) the use of computers to perform or 

to assist in specific tasks that were heretofore the purview of human intellect, 

and (ii) the evidence derived from those computer systems. 

As a term of art in computer science, “artificial intelligence” is an 

umbrella term for a number of research topics and underlying technologies 

aimed at furthering the application of computers to intellectual tasks, as well 

as the tasks themselves. It is not a single technology or function. “Rule-

bases,” “language models,” and “machine learning” are common underlying 

technologies, while “chess playing,” “question answering,” and “automobile 

driving” are common applications. Various related applications are often 

considered together as fields of study, such as game playing, natural 

language processing (“NLP”),24 computer vision,25 information retrieval 

(“IR”), and robotics. 

In common parlance, “artificial intelligence” is often little more than a 

synonym for either the latest, greatest technology, the technology of science 

fiction, or simply, a reference to a computer system that can somehow learn. 

 

in all respects. . . . It’s the best at everything – maths, science, medicine, hobbies, you name it. Even the 

brightest minds cannot come close to [its] abilities. . . .” Types of AI: Distinguishing Weak, Strong, and 

Super AI, THINKAUTOMATION, https://www.thinkautomation.com/bots-and-ai/types-of-ai-

distinguishing-between-weak-strong-and-super-ai [https://perma.cc/S9TM-BZ8C]. At least for now, this 

type of AI remains in the realm of science fiction. Id. Nonetheless, for a dystopian view on what may be 

coming our way in the future, see Maureen Dowd, A.I. Is Not A-OK, NEW YORK TIMES (Oct. 30, 2021), 

https://www.nytimes.com/2021/10/30/opinion/eric-schmidt-ai.html [https://perma.cc/574T-74SQ]. 

 23 See, e.g., Ragnar Fjelland, Why General Artificial Intelligence Will Not Be Realized, 7 HUMAN. & 

SOC. SCI. COMM. 10 (2020). But see VINCENT C. MÜLLER & NICK BOSTROM, Future Progress in 

Artificial Intelligence: A Survey of Expert Opinion, in FUNDAMENTAL ISSUES OF ARTIFICIAL 

INTELLIGENCE (Vincent C. Müller ed., Springer 2014). For an early take on this subject, see IRVING JOHN 

GOOD, Speculations Concerning the First Ultraintelligent Machine*, in 6 ADVANCES IN COMPUTER 31, 

31–33 (1966). 

 24 See Michael J. Garbade, A Simple Introduction to Natural Language Processing, BECOMING 

HUMAN: A.I. MAG. (Oct. 15, 2018), https://becominghuman.ai/a-simple-introduction-to-natural-

language-processing-ea66a1747b32 [https://perma.cc/45GN-S9KB] (“Natural Language Processing, 

usually shortened as NLP, is a branch of [AI] that deals with the interaction between computers and 

humans using the natural language. The ultimate objective of NLP is to read, decipher, understand, and 

make sense of the human language. . . .”); see also Natural Language Processing, WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=Natural_language_processing&oldid=1001740510 

[https://perma.cc/ 8GJ6-WDEU]. 

 25 See Computer Vision, WIKIPEDIA,  

https://en.wikipedia.org/w/index.php?title=Computer_vision&oldid=1000754216 

[https://perma.cc/VZH4-N2JN] (“Computer vision is an interdisciplinary scientific field that deals with 

how computers can gain high-level understanding from digital images or videos.”). 
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Arguably, once an application of technology becomes well established, it 

becomes engineering,26 rather than AI. For example, spam filters and 

computerized systems that can compare two documents and identify their 

differences were both once considered AI, but today are simply referred to 

as “software.” This has led some commentators to conclude that AI is 

“whatever computers cannot do . . . until they can.”27 Thus, part of the 

challenge in defining AI is that its goal posts are constantly changing. 

For our purpose, it is useful to outline the common technologies and 

tasks of AI, but not to be overly concerned with whether any particular 

technology—or any particular combination of technologies—constitutes AI, 

or merely reflects the products of engineering. 

II.    WHY AI HAS COME TO THE FOREFRONT TODAY 

Although the term “artificial intelligence” appears to have been coined 

in 1956 by the organizers of the Dartmouth Summer Research Project on 

Artificial Intelligence,28 the idea coincides with the invention of the modern 

computer. In 1948, Alan Turing, who had previously described mathematical 

problems that no computer could solve, wrote the manuscript “Intelligent 

Machinery,”29 outlining the prospect that digital computers could “show 

intelligent behavior.” In 1950, Turing proposed “The Imitation Game,”30 

now commonly known as the “Turing Test,” to illustrate the question: “Can 

machines think?” The Imitation Game was somewhat more complicated than 

it is commonly paraphrased today. It involved three players: a woman (“A”), 

a man or a computer disguising itself as a woman (“B”), and a human 

interrogator of either sex (“C”), who could ask written questions and receive 

written answers from A and B, anonymized as X and Y. The interrogator 

would then guess which of X or Y was A, and which was B. If the computer 

 

 26 Engineering is defined as “the application of science and mathematics by which the properties of 

matter and the sources of energy in nature are made useful to people [such as through] the design and 

manufacture of complex products.” Engineering, MERRIAM-WEBSTER.COM DICTIONARY, 

https://www.merriam-webster.com/dictionary/engineering [https://perma.cc/V3FR-Q4ZT]. 

 27 Kathryn Hume, Five Distractions in Thinking About AI, QUAM PROXIME | AS NEAR AS MAY BE 

(Mar. 25, 2017), https://quamproxime.com/2017/03/25/five-distractions-in-thinking-about-ai 

[https://perma.cc/7Y2Q-TF6N]. Cf. Artificial Intelligence is What We Can Do That Computers Can’t . . . 

Yet, SELFAWAREPATTERNS.COM (Feb. 27, 2014), https://selfawarepatterns.com/2014/02/27/artificial-

intelligence-is-what-we-can-do-that-computers-cant-yet [https://perma.cc/7GA8-KHY2]. 

 28 See McCarthy et al., supra note 12. 

 29 A.M. TURING, INTELLIGENT MACHINERY, NAT’L PHYSICAL LAB. (1948), reprinted in THE 

ESSENTIAL TURING: SEMINAL WRITINGS IN COMPUTING, LOGIC, PHILOSOPHY, ARTIFICIAL 

INTELLIGENCE, AND ARTIFICIAL LIFE: PLUS THE SECRETS OF ENIGMA 395–432 (B. Jack Copeland ed., 

2004). 

 30 Turing, supra note 12. 
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could fool the interrogator as often as the man, it could be said to display 

intelligent behavior. 

Arguably, state-of-the-art technology today could be mustered to pass 

this test of weak AI, which would illustrate not only the computer’s ability 

to emulate one human, but also to fool another. To be reasonably convincing, 

however, the test would need to be conducted according to a valid scientific 

protocol; most likely a randomized, controlled, double-blind trial. 

In 1951, Claude Shannon, who had shared ideas with Turing since 

1943, demonstrated a robotic mouse named Theseus that could find its way 

out of a maze, learning the layout of the maze in the process.31 Theseus could 

remember the maze and find its way out a second time without making a 

wrong turn, but could also adapt its understanding if it discovered the maze 

had been changed. Theseus’ logic was implemented by a large computer 

built from switching circuits, which communicated with the mouse using 

magnetic and electrical signals. Theseus illustrates many aspects of modern 

AI systems: perception, memory, problem solving, and active interaction 

with its environment. 

Turing died tragically in 1954; Shannon, in collaboration with Marvin 

Minsky, John McCarthy, and Nathaniel Rochester organized the Dartmouth 

Project in 1956.32 The Project identified several aspects of the “artificial 

intelligence problem,” including the speed and memory capacities of 

computers, efficient and effective algorithms, programming a computer to 

use language, employing neural nets to represent concepts, abstraction from 

raw data, and harnessing randomness and creativity.33 

The research community has made steady progress on these 

foundational technologies, as well as their application to particular narrow 

AI tasks. Arguably, we are just beginning to round the “Peak of Inflated 

Expectations,”34 but this should not obscure the explosive progress that has 

 

 31 See Robert G. Gallager, Claude E. Shannon: A Retrospective on His Life, Work, and Impact, 

47 IEEE TRANSAC. ON INFO. THEORY 2681 (2001); see also Nokia Bell Labs Archives and the AT&T 

Archives and History Center, Where Did Digital Communication Begin? Curated Highlights of 

“Theseus,” Circa 1950s, YOUTUBE (June 10, 2015), https://www.youtube.com/watch?v=nS0luYZd4fs 

[https://perma.cc/M47U-S6E7]. 

 32 See McCarthy et al., supra note 12. 

 33 See id. 

 34 The “Peak of Inflated Expectations” is the phase of the Gartner technology hype lifecycle where 

“[e]arly publicity produces a number of success stories—often accompanied by scores of failures. Some 

companies take action; many do not.” Gartner Hype Cycle, GARTNER,  

https://www.gartner.com/en/research/methodologies/gartner-hype-cycle [https://perma.cc/Z2EA-JKTF]. 

See also Laurence Goasduff, 2 Megatrends Dominate the Gartner Hype Cycle for Artificial Intelligence, 

2020 (Sept. 28, 2020), https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-gartner-

hype-cycle-for-artificial-intelligence-2020 [https://perma.cc/6RE8-QCB5] (“If AI as a general concept 

was positioned on this year’s Gartner Hype Cycle, it would be rolling off the Peak of Inflated 
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been made and will continue to be made in this century, notwithstanding and 

throughout the ensuing “Trough of Disillusionment.”35 

Progress in AI can, in large part, be attributed to advances in the ability 

to gather and store vast amounts of raw data.36 Where computers of Turing’s 

and Shannon’s day were severely limited by their memory capacity, today’s 

computer systems are limited, not so much by their ability to gather or store 

data, but by their ability to make sense of it.37 The transition from scarcity to 

glut has occasioned the use of machine-learning algorithms—both old and 

new—to achieve remarkable progress in many AI tasks. 

The speed of computer processors has increased dramatically to the 

point that a typical processor at the turn of the century was about a million 

times faster than the processors available at the time of the Dartmouth 

Project.38 Since that time, the speed of individual processors has plateaued 

due to the limitations of physics, and increased computational power has 

come by placing several processors (“cores”) into a common device, or by 

connecting many discrete computer systems together in a communication 

network to form a cluster. Graphics processing units (“GPUs”)39 contain 

hundreds or thousands of cores; the clusters maintained by cloud service 

providers contain thousands of interconnected discrete computer systems. To 

harness the computing power afforded by multiple processors, algorithms 

 

Expectations,” meaning that “AI is starting to deliver on its potential and its benefits for businesses are 

becoming a reality.”). 

 35 The “Trough of Disillusionment” is the phase of the Gartner technology hype lifecycle where 

“[i]nterest wanes as [technological] experiments and implementations fail to deliver. Producers of the 

technology shake out or fail. Investments continue only if the surviving providers improve their products 

to the satisfaction of early adopters.” Gartner Hype Cycle, GARTNER, 

https://www.gartner.com/en/research/methodologies/gartner-hype-cycle [https://perma.cc/Z2EA-JKTF]. 

 36 For example, the average consumer today carries more computing power in their pocket than that 

which landed a satellite on the moon. See Tibi Puiu, Your Smartphone Is Millions of Times More Powerful 

than the Apollo 11 Guidance Computers, ZME SCI. (May 13, 2021). 

 37 See F.J. BURKOWSKI ET AL., A GLOBAL SEARCH ARCHITECTURE, Technical Report CS-95-12 

(Dep’t of Computer Sci., Univ. Waterloo, Mar. 15, 1995),  

https://cs.uwaterloo.ca/research/tr/1995/12/mt.pdf [https://perma.cc/EC7P-8VVJ]. 

 38 See Jonathan G. Koomey et al., Implications of Historical Trends in the Electrical Efficiency of 

Computing, 33 IEEE ANNALS OF THE HISTORY OF COMPUTING 46 (2011). 

 39 A graphics processing unit (“GPU”) is a “specialized, [programmable,] electronic circuit designed 

to rapidly . . . accelerate the creation [and rendering] of images” on a computer screen or other display 

device. “GPUs are used in embedded systems, mobile phones, personal computers, workstations, and 

game consoles. Modern GPUs are very efficient at manipulating computer graphics and image processing. 

Their highly parallel structure makes them more efficient than general-purpose central processing units 

(CPUs) for algorithms that process large blocks of data in parallel,” as used for example, in the smoot 

decoding and rendering of 3D animations and video. The more sophisticated the GPU, the higher the 

resolution and the faster and smoother the motion. See Graphics Processing Unit, WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=Graphics_processing_unit&oldid=1000546516 

[https://perma.cc/KSE2-H4P7]; GPU, PCMAG ENCYCLOPEDIA, 

https://www.pcmag.com/encyclopedia/term/gpu [https://perma.cc/CQ8D-YHAC]. 
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must split the problem up into pieces, each of which is solved by a separate 

processor. Specialized software tools like Google’s TensorFlow40 facilitate 

the implementation of machine-learning algorithms on GPUs, while tools 

like Apache Hadoop®41 and Apache Spark™42 facilitate the use of clusters. 

The ready availability of commodity computers, Internet access, and 

open-source software has spawned a plethora of high-quality tools like 

TensorFlow, Hadoop, and Spark, as well as the Linux® operating system,43 

the Android mobile operating system,44 and implementations of state-of-the-

art learning algorithms like logistic regression, support vector machines 

(“SVM”), random forests, and artificial neural networks (“ANN”). 

Commercial enterprises like Google, Amazon, Microsoft, Oracle, Yandex, 

Baidu, and Huawei, as well as professionals, hobbyists, and hackers 

throughout the world are members of the open-source ecosystem, using and 

contributing to a global body of software, often stored in freely accessible 

repositories like Github.45 This low barrier to entry allows almost anyone to 

build AI. Much, if not most commercial software relies, at least in part, on 

open-source software, even if it is not itself open-source. 

Crowd-sourcing platforms, gamification, and instrumentation of search 

engines, application software, and “smart” appliances provide vast amounts 

of raw data for use as input to machine-learning systems. Perhaps the largest 

source is the Web itself, and other data sources, private and public, available 

through the Internet. Yet access to some data—including medical data, 

certain personal information (e.g., bank records46), and government 

 

 40 See An End-To-End Open Source Machine Learning Platform, TENSORFLOW, 

https://www.tensorflow.org [https://perma.cc/72ST-ZZRQ]; see also Martín Abadi, TensorFlow: 

Learning Functions at Scale, 51 PROC. OF THE 21ST ACM SIGPLAN INT’L CONF. ON FUNCTIONAL 

PROGRAMMING 1 (2016). 

 41 See APACHE HADOOP, https://hadoop.apache.org [https://perma.cc/TU3S-AVM9]; see also 

Konstantin Shvachko et al., The Hadoop Distributed File System, 2010 IEEE SYMP. ON MASS STORAGE 

SYST. & TECH. 1 (2010), https://storageconference.us/2010/Papers/MSST/Shvachko.pdf 

[https://perma.cc/HG8F-GT65]. 

 42 See Unified Engine for Large-Scale Data Analytics: What is Apache Spark™?, APACHE HADOOP, 

https://spark.apache.org [https://perma.cc/AY24-E5P5]; see also MATEI ZAHARIA ET AL., SPARK: 

CLUSTER COMPUTING WITH WORKING SETS 1 (EECS Dep’t, Univ. of Cal., Berkeley 2010), 

https://www.usenix.org/legacy/event/hotcloud10/tech/full_papers/Zaharia.pdf [https://perma.cc/NC7E-

F92J]. 

 43 Understanding Linux, REDHAT (March 19, 2018), https://www.redhat.com/en/topics/linux 

[https://perma.cc/5QWU-BYBA]. 

 44 See Introducing Android 11., ANDROID, https://www.android.com/intl/en_ca 

[https://perma.cc/TU9Y-QZPE]; see also Android (Operating System), WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=Android_(operating_system)&oldid=1001663336 

[https://perma.cc/TDF3-LX45]. 

 45 See GITHUB, https://github.com [https://perma.cc/UZ69-C9CS]. 

 46 “Financial privacy laws regulate the manner in which financial institutions handle the nonpublic 

financial information of consumers. In the United States, financial privacy is regulated through laws 
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records—remains heavily restricted, especially to impartial observers. 

Corporations that collect data, particularly in the United States, are subject 

to less onerous restrictions than university researchers subject to ethics 

oversight; hackers who acquire or deduce unauthorized data are essentially 

unconstrained in their use of it for nefarious purposes. 

Organized evaluation efforts with multiple participants have been 

instrumental in advancing the state of the art in AI. The National Institute of 

Technology’s (NIST’s) Text REtrieval Conference (TREC),47 for example, 

poses annual information-retrieval tasks which are undertaken by academic 

and non-academic teams throughout the world. At TREC’s inception in 

1992, the challenge was to find relevant information in a corpus of one-half 

million documents, which was distributed on two compact discs.48 At that 

time—the dawn of information abundance—that was the largest controlled 

evaluation of information-retrieval systems ever undertaken, by more than 

an order of magnitude.49 1992 also saw explosive growth of the World Wide 

Web, originally conceived in 1989,50 followed a few years later by the first 

 

enacted at the federal and state level. Federal regulations [include] the Bank Secrecy Act, Right to 

Financial Privacy Act, the Gramm-Leach-Bliley Act, and the Fair Credit Reporting Act. Provisions within 

other laws like the Credit and Debit Card Receipt Clarification Act of 2007, as well as the Electronic 

Funds Transfer Act also contribute to financial privacy in the United States. State regulations vary from 

state to state. While each state approaches financial privacy differently, they mostly draw from federal 

laws and provide more stringent outlines and definitions. Government agencies like the Consumer 

Financial Protection Bureau and the Federal Trade Commission provide enforcement for financial privacy 

regulations.” Financial Privacy Laws in the United States, WIKIPEDIA,  

https://en.wikipedia.org/w/index.php?title=Financial_privacy_laws_in_the_United_States&oldid=9944

68039 [https://perma.cc/9JMD-UKPD]. 

 47 NIST was founded in 1901 and is a part of the United States Department of Commerce. Its website 

describes it as “one of the nation’s oldest physical science laboratories. Congress established the agency 

to remove a major challenge to U.S. industrial competitiveness at the time—a second-rate measurement 

infrastructure that lagged behind the capabilities of the United Kingdom, Germany, and other economic 

rivals.” About NIST, NIST, https://www.nist.gov/about-nist [https://perma.cc/3RU7-ASNX]. “The Text 

REtrieval Conference (TREC), co-sponsored by [NIST] and [the] U.S. Department of Defense, was 

started in 1992 as part of the TIPSTER Text program. Its purpose was to support research within the 

information retrieval community by providing the infrastructure necessary for large-scale evaluation of 

text retrieval methodologies.” Overview, TREC, https://trec.nist.gov/overview.html 

[https://perma.cc/2Y9P-GQWL]. 

 48 See Donna Harman, Overview of the First Text REtrieval Conference (TREC-1), NIST SPECIAL 

PUB. 500-207 1 (1993), https://trec.nist.gov/pubs/trec1/papers/01.txt [https://perma.cc/G4LS-YTJL]; 

Donna K. Harman, Overview of the First TREC Conference, PROC. OF THE 16TH ANN. INT’L ACM SIGIR 

CONF. ON RSCH. AND DEV. IN IR 36–47 (1993), https://dl.acm.org/doi/10.1145/160688.160692 

[https://perma.cc/MC2Z-K4PQ]. 

 49 See Donna K. Harman, The TREC Test Collections, in TREC: EXPERIMENT and EVALUATION IN 

INFORMATION RETRIEVAL 21–52 (Ellen M. Voorhees and Donna K. Harman eds., MIT Press 2005). 

 50 A Short History of the Web, CERN, https://home.cern/science/computing/birth-web/short-history-

web [https://perma.cc/2P93-KKE6]. 
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Web search engines, arguably influenced by TREC.51 By 2009, TREC used 

a corpus of 500 million documents.52 Meanwhile, Google eclipsed this total, 

announcing in 2008 that it could search 1,000 billion (i.e., one trillion) 

documents.53 

The annual TREC challenges continue to this day, focused on more 

sophisticated tasks rather than sheer volume. Notable tracks have included 

“Question Answering,” which arguably spawned IBM’s Watson;54 “Legal,”55 

which demonstrated the efficacy of technology-assisted review (“TAR”)56 in 

electronic discovery; and “Total Recall,”57 which demonstrated the efficacy 

of Continuous Active Learning® (“CAL®”)58 on sensitive clinical and 

 

 51 See The History of Search Engines, WORDSTREAM, 

https://www.wordstream.com/articles/internet-search-engines-history [https://perma.cc/L8ZT-8ZC3]; 

see generally BRENT R. ROWE ET AL., ECONOMIC IMPACT ASSESSMENT OF NIST’S TEXT RETRIEVAL 

CONFERENCE (TREC) PROGRAM: FINAL REPORT, RTI PROJ. NO. 0211875 (2010), 

https://trec.nist.gov/pubs/2010.economic.impact.pdf [https://perma.cc/X8K6-RAXL]. 

 52 See The ClueWeb09 Dataset, THE LEMUR PROJECT, https://lemurproject.org/clueweb09 

[https://perma.cc/8GYS-JB8F]. 

 53 Jesse Alpert & Nissan Hajaj, We Knew the Web Was Big . . . , GOOGLE OFFICIAL BLOG (July 25, 

2008), https://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html [https://perma.cc/CBX7-

8KS9]. 

 54 See Question Answering Track, NAT. INST. STANDARDS TECH., 

https://trec.nist.gov/data/qamain.html [https://perma.cc/PGP2-JBJW]; see also John Prager, The TREC 

Question Answering Track and IBM Watson, Celebrating 25 Years of TREC, Webcast Part 3 at mins. 

24:00 to 50:00, NAT. INST. STANDARDS TECH. (Nov. 18, 2016), https://www.nist.gov/news-

events/events/2016/11/webcast-text-retrieval-conference [https://perma.cc/52HE-UZ8Q]. 

 55 See About the Legal Track, TREC LEGAL TRACK, https://trec-legal.umiacs.umd.edu 

[https://perma.cc/8K44-FGR4]. 

 56 “Technology-Assisted Review (TAR) [is a] process for Prioritizing or Coding a Collection of 

Documents using a computerized system that harnesses human judgments of one or more Subject Matter 

Expert(s) on a smaller set of Documents and then extrapolates those judgments to the remaining 

Document Collection. Some TAR methods use Machine Learning Algorithms to distinguish Relevant 

from Non-Relevant Documents, based on Training Examples Coded as Relevant or Non-Relevant by the 

Subject Matter Experts(s), while other TAR methods derive systematic Rules that emulate the expert(s)’ 

decision-making process. TAR processes generally incorporate Statistical Models and/or Sampling 

techniques to guide the process and to measure overall system effectiveness.” Maura R. Grossman & 

Gordon V. Cormack, The Grossman-Cormack Glossary of Technology-Assisted Review, 7 FED. CTS. L. 

REV. 1, 32 (2013). 

 57 See TREC 2016 Total Recall Track, UNIV. OF WATERLOO (May 23, 2016), 

https://plg.uwaterloo.ca/~gvcormac/total-recall [https://perma.cc/GK6X-6YBC]. 

 58 Continuous Active Learning® and CAL® refer to a particular TAR protocol. See Maura R. 

Grossman & Gordon V. Cormack, Continuous Active Learning for TAR, PRAC. L.J. (2016). For a more 

technical discussion of CAL®, see Gordon V. Cormack & Maura R. Grossman, Evaluation of Machine-

Learning Protocols for Technology-Assisted Review in Electronic Discovery, PROC. 37TH INT’L ACM 

SIGIR CONFR. ON RSCH. & DEV. INFO. RETRIEVAL, 153, 153–62 (2014), 

https://dl.acm.org/doi/10.1145/2600428.2609601 [https://perma.cc/3MAE-PVD4]. Continuous Active 

Learning® and CAL® are registered trademarks of Maura R. Grossman and Gordon V. Cormack. See 

CONTINUOUS ACTIVE LEARNING – Trademark Details, JUSTIA TRADEMARKS, 

https://trademarks.justia.com/866/34/continuous-active-86634255.html [https://perma.cc/N3Z4-4JM9]; 
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government data. The datasets and evaluation tools for the various TREC 

tracks remain available for the purpose of evaluating new approaches as they 

are invented.59 

TREC is but one of many evaluation forums. The Defense Advanced 

Research Projects Agency (“DARPA”) Grand Challenge60 kick-started 

progress in the development of autonomous vehicles. In 2004, no participant 

was able to complete the specified route.61 By 2005, five teams completed 

the route, deploying an impressive array of innovative combinations of 

technology.62 

The Knowledge Discovery and Data Mining competition (“KDD Cup”) 

is an on-line competition that has run since 1997.63 Since then, hundreds, if 

not thousands, of similar competitions have been held in which participants 

are given a task and submit their results or their software to a server that 

evaluates their submissions.64 Netflix offered a $1M prize to participants who 

could build the best recommender system for movies.65 Kaggle66 runs a 

commercial platform that clients can use to host similar competitions. 

The confluence of increased data capacity, processing power, the 

Internet, low barriers to entry, innovation, and community evaluation have 

undoubtedly spurred the progress of AI. So, too, has advertising had a 

significant influence on it. The primary impetus for the providers of search 

engine or social media platforms is to entice users to click on ads; a 

secondary goal may be to collect information about them, so as to use that 

information to entice users, along the way, to click on more ads, or to sell the 

 

CAL – Trademark Details, JUSTIA TRADEMARKS, https://trademarks.justia.com/866/34/cal-

86634265.html [https://perma.cc/TAR8-LTZV]. 

 59 TREC Research Collections Volumes 1–5 (English-language data) can be found at Data – English 

Documents, NIST, https://trec.nist.gov/data/docs_eng.html [https://perma.cc/AT76-UHS4]. Other 

collections are available through websites devoted to particular TREC Tracks. See, e.g., Data, NIST, 

https://trec.nist.gov/data.html [https://perma.cc/R6DL-C8PZ]; see generally Harman, supra note 49. 

 60 The Grand Challenge, DEFENSE ADVANCED RESEARCH PROJECTS AGENCY, 

https://www.darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-vehicles 

[https://perma.cc/27HB-D2EY]. 

 61 Id. 

 62 See id. 

 63 KDD Cup Archives, KDD, https://www.kdd.org/kdd-cup [https://perma.cc/G87N-XWVX]. 

 64 See, e.g., Analytics, Data Science, Data Mining Competitions, KDNUGGETS™, 

https://www.kdnuggets.com/competitions [https://perma.cc/6X8A-U45C]; Benedict Neo, 11 Data 

Science Competitions for You to Hone Your Skills for 2020, TOWARDS DATA SCI. (Dec. 2, 2019), 

https://towardsdatascience.com/10-data-science-competitions-for-you-to-hone-your-skills-for-2020-

32d87ee19cc9 [https://perma.cc/M6CQ-YM56]; Parul Pandey, Top Competitive Data Science Platforms 

Other Than Kaggle, TOWARDS DATA SCI. (Apr. 7, 2019), https://towardsdatascience.com/top-

competitive-data-science-platforms-other-than-kaggle-2995e9dad93c [https://perma.cc/82YJ-NN5J]. 

 65 Netflix Prize, NETFLIX, https://www.netflixprize.com [https://perma.cc/2N44-UZW2]. 

 66 Competitions, KAGGLE, https://www.kaggle.com/competitions [https://perma.cc/6RFM-SA7F]. 



NORTHWESTERN JOURNAL OF TECHNOLOGY AND INTELLECTUAL PROPERTY 

24 

users’ information to other enterprises wishing to get such users to purchase 

their wares, to vote for their candidate, to write a product review, to 

participate in an opinion poll, or to otherwise influence the users’ behavior. 

Fulfilling the users’ explicit needs is an incentive for the service provider 

only insofar as it furthers their own ends. Even Uber—the ride-sharing 

service—was developed, in part, to generate data to be used for the 

autonomous vehicles that the company was developing, as well as for other 

uses.67 

III.    THE AI TECHNOLOGY LANDSCAPE 

Foundational AI technologies may be classified according to a set of 

abstract problems they are designed to solve, and the methods they employ 

to solve those problems. One of the most fundamental abstract problems is 

that of classification: determining whether a plant is edible or inedible, 

whether evidence is relevant or not, whether a potential juror will vote to 

convict or acquit, and so on. A related problem is one of ranking: ordering 

plants according to their food value, or evidence according to its weight, or 

jurors according to how likely they are to vote to convict. A third related 

problem is one of regression: rendering a quantitative estimate of a specific 

value, such as the caloric value of a plant, the probative value of a particular 

piece of evidence, or the probability that an individual juror will vote to 

convict. The solutions to all three problems can be used to summarize 

existing data and/or to predict future outcomes. 

The problems of classification, ranking, and regression are commonly 

addressed by supervised machine-learning algorithms, such as Naïve Bayes, 

Nearest Neighbor, Perceptron, Random Forests, Logistic Regression, 

Support Vector Machines (“SVM”), and Artificial Neural Networks 

(“ANN”), including Convolutional Neural Networks (“CNN”) and 

 

 67 See Prableen Bajpai, How Uber Uses Your Ride Data, INVESTOPEDIA (Sept. 20, 2021), 

https://www.investopedia.com/articles/investing/030916/how-uber-uses-its-data-bank.asp 

[https://perma.cc/T3NU-MNWM]; Neil Patel, How Uber Uses Data to Improve Their Service and Create 

the New Wave of Mobility, NEILPATEL BLOG, https://neilpatel.com/blog/how-uber-uses-data 

[https://perma.cc/DM8H-AU9W]. The Uber example epitomizes the umbrella concept of “data 

monetization,” i.e., “the process of using data to obtain quantifiable economic benefit. Internal or indirect 

methods include using data to make measurable business performance improvements and inform 

decisions. External or direct methods include data sharing to gain beneficial terms or conditions from 

business partners, information bartering, selling data outright (via a data broker or independently), or 

offering information products and services (for example, including information as a value-added 

component of an existing offering).” Data Monetization, GARTNER, 

https://www.gartner.com/en/information-technology/glossary/data-monetization 

[https://perma.cc/6B8H-W4CP]; see also Data Monetization, WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=Data_monetization&oldid=984813795 

[https://perma.cc/K4BJ-GG5D]. 



19:1 (2021) AI as Evidence 

25 

Recurrent Neural Networks (“RNN”). The latter three algorithms are often 

referred to as “Deep Learning.”68 

A supervised machine-learning algorithm is trained to make 

distinctions in the same way that a child is taught to learn by showing the 

child examples, along with the correct answer: This is a cat, and that is a dog. 

Essentially, a supervised machine-learning algorithm infers mathematical 

functions from old, labeled data to make guesses about new, unlabeled data. 

So, for example, a classification algorithm might be shown examples of 

foods and poisons, of relevant and non-relevant evidence, or of jurors who 

have voted in the past to convict or to acquit. Based on this training, the 

learning algorithm builds a model, which is used to classify new examples 

for which it has not been given the correct answer. Many models, rather than 

yielding a categorical answer, in fact perform regression, estimating the 

likelihood, the probability, or a confidence score that the new example 

belongs to a particular category. This score is transformed into a categorical 

result by setting a threshold and deeming all examples above the threshold 

to be, for example, edible, and all others to be inedible. The scores can 

similarly be used for ranking or ordering a list of examples by their scores. 

Some AI applications are fairly straightforward instances of the abstract 

problems of classification, ranking, and regression. A spam filter quarantines 

or deletes email that it classifies as inappropriate or malevolent. A Web 

Search engine ranks Web pages according to the likelihood they will satisfy 

the user’s request, yielding a results page containing the 10-best hits, in 

order, from billions of potential candidates. Regression methods—some of 

which have been in use since before the invention of modern computers—

can be used to estimate the probability of disease given certain risk factors, 

the maximum safe speed for maneuvering a vehicle over a particular terrain, 

the value of a particular property, or the grade to assign to an essay. Other 

AI applications, such as speech recognition, language translation, and 

autonomous vehicles, must address a complex web of interdependent AI 

problems. 

Active learning and reinforcement learning are supervised machine-

learning strategies in which the machine-learning algorithm selects its own 

training examples from which to best learn. In so doing, the algorithm must 

balance two objectives: exploration, in which it learns as much as it can, and 

 

 68 Aravind Pai, CNN vs. RNN vs. ANN – Analyzing 3 Types of Neural Networks in Deep Learning, 

ANALYTICS VIDHYA (Feb. 17, 2020), https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-

mlp-analyzing-3-types-of-neural-networks-in-deep-learning [https://perma.cc/V3FP-USDX]; see 

Abhishek Gupta, Difference Between ANN, CNN and RNN, GEEKSFORGEEKS (July 17, 2020), 

https://www.geeksforgeeks.org/difference-between-ann-cnn-and-rnn [https://perma.cc/Q78G-MKS2]. 



NORTHWESTERN JOURNAL OF TECHNOLOGY AND INTELLECTUAL PROPERTY 

26 

exploitation, in which it employs what it has learned thus far to address the 

problem at hand.69 

Unsupervised machine-learning algorithms, in contrast, are not given 

the correct answer for any of their training examples. Instead, they look for 

patterns, groupings, or anomalies that might be of interest—either to the end 

user or as fodder for a supervised machine-learning algorithm.70 The most 

common abstract problems to which unsupervised learning are applied are 

clustering and latent feature analysis. Clustering groups together things that 

the algorithm considers to be similar.71 For example, given a deck of playing 

cards, it might consider the red cards to be one cluster, and the black to be 

another. Or it might consider the face cards to be one cluster, the numbered 

cards to be a second cluster, and the aces to be a third. Or it might consider 

spades, hearts, and clubs to be a cluster because their suit icons are curvy, 

and diamonds to be a separate cluster, because they are not. Clustering can 

be a useful aid in exploration of new or unknown data sets, either by a human 

or by a supervised machine-learning algorithm. 

Feature analysis decomposes the input for classification, ranking, or 

regression systems into components (“features”) for analysis by a supervised 

machine-learning algorithm.72 In many cases, features are identified by a 

manual process known as feature engineering.73 The features of a document 

written in English, for example, may be the words or phrases that it contains. 

 

 69 See, e.g., THOMAS OSUGI ET AL., BALANCING EXPLORATION AND EXPLOITATION: A NEW 

ALGORITHM FOR ACTIVE MACHINE LEARNING, (CSE Conference and Workshop Papers 2005), 

https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1141&context=cseconfwork 

[https://perma.cc/628P-ZM9N]. 

 70 See Unsupervised Learning, WIKIPEDIA,  

https://en.wikipedia.org/w/index.php?title=Unsupervised_learning&oldid=1001697007 

[https://perma.cc/4H8U-3PGV]. 

 71 Cluster Analysis, WIKIPEDIA,  

https://en.wikipedia.org/w/index.php?title=Cluster_analysis&oldid=1001573349 

[https://perma.cc/6UZY-88CQ]. 

 72 “In machine learning . . . a feature is an individual measurable property or characteristic of a 

phenomenon being observed. Choosing informative, discriminating and independent features is a crucial 

step for effective algorithms in pattern recognition, classification and regression.” Feature (Machine 

Learning), WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=Feature_(machine_learning)&oldid=993569874 

[https://perma.cc/5TM9-FNAW]. 

 73 “Feature engineering is the process of using domain knowledge to extract features from raw data 

via data mining techniques. These features can be used to improve the performance of machine learning 

algorithms.” Feature Engineering, WIKIPEDIA,  

https://en.wikipedia.org/w/index.php?title=Feature_engineering&oldid=996982436 

[https://perma.cc/N2L2-GZTM]; see also Will Koehrsen, Feature Engineering: What Powers Machine 

Learning - How to Extract Features from Raw Data for Machine Learning, TOWARDS DATA SCI. (Nov. 

12, 2018), https://towardsdatascience.com/feature-engineering-what-powers-machine-learning-

93ab191bcc2d [https://perma.cc/3WKF-ZTB2]. 
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But many words have similar underlying meanings, and unsupervised 

methods like latent semantic indexing (“LSI”) or latent semantic analysis 

(“LSA”),74 probabilistic latent semantic indexing (“PLSI”) or probabilistic 

latent semantic analysis (“PLSA”),75 and latent Dirichlet analysis (“LDA”)76 

identify combinations of words that are used in similar contexts, under the 

theory that they are likely to represent similar concepts. For example, the 

terms “bat,” “baseball,” “pitcher,” and “glove,” might be grouped together 

to represent one concept, as might “bat,” “Halloween,” vampires,” and 

“blood” to represent another. The words in the document are transformed 

into a list of concept weights, denoting the extent to which each is 

represented in the document. It is important to note that latent feature 

analysis does not itself do classification, ranking, or regression, but may be 

used to create features that are used as input to a supervised machine-learning 

algorithm that performs those tasks. 

Feature engineering for English text is relatively easy because it can be 

split into words using simple lexical rules. But languages like Chinese, 

Japanese, and Korean have no lexical cues that split the text into “words.” 

An even more challenging issue arises for images, as well as audio and video 

 

 74 “Latent semantic analysis (LSA) is a technique in natural language processing . . . of analyzing 

relationships between a set of documents and the terms they contain by producing a set of concepts related 

to the documents and terms. . . . In the context of its application to information retrieval, it is sometimes 

called latent semantic indexing (LSI).” Latent Semantic Analysis, WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=Latent_semantic_analysis&oldid=1001352831 

[https://perma.cc/K768-GTAQ]. For a more technical discussion of LSI/LSA, see Susan T. Dumais, 

Latent Semantic Analysis, 38 ANN. REV. INFO. SCI. & TECH 188 (2005); Scott Deerwester et al., Indexing 

by Latent Semantic Analysis, 41 J. AM. SOC. INFO. SCI. 391 (1990). 

 75 “Probabilistic latent semantic analysis (PLSA), also known as probabilistic latent semantic 

indexing (PLSI, especially in information retrieval circles) is a statistical technique for the analysis of 

two-mode and co-occurrence data. In effect, one can derive a low-dimensional representation of the 

observed variables in terms of their affinity to certain hidden variables, just as in latent semantic analysis, 

from which PLSA evolved.” Probabilistic Latent Semantic Analysis, WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=Probabilistic_latent_semantic_analysis&oldid=993310631 

[https://perma.cc/6C5G-JD4R]. For a more technical discussion of PLSA/PLSI, see Thomas Hofmann, 

Probabilistic Latent Semantic Indexing, PROC. 22ND ANN. INT’L ACM SIGIR CONF. ON RSCH. & DEV. 

IN IR, 50–57 (1999), http://cis.csuohio.edu/~sschung/CIS660/PLSIHoffman.pdf 

[https://perma.cc/A49W-Q6X8]. 

 76 “In natural language processing, the latent Dirichlet allocation (LDA) is a generative statistical 

model that allows sets of observations to be explained by unobserved groups that explain why some parts 

of the data are similar. For example, if observations are words collected into documents, it posits that 

each document is a mixture of a small number of topics and that each word’s presence is attributable to 

one of the document’s topics. LDA is an example of a topic model and belongs to the machine learning 

toolbox and in wider sense to the artificial intelligence toolbox.” Latent Dirichlet Allocation, WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=Latent_Dirichlet_allocation&oldid=1000686922 

[https://perma.cc/VVK5-SHWM]. For a more technical discussion of LDA, see generally David M. Blei 

et al., Latent Dirichlet Allocation, 3 J. MACH. LEARNING. RSCH. 993 (2003). 
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recordings, where there are no easily identified features that can be used for 

classification, ranking, or regression. 

“Deep Learning” refers to the combination of two or more learning 

algorithms which, in combination, perform feature analysis as well as an 

abstract task such as classification, ranking, or regression.77 Typically, these 

algorithms are implemented as multi-layered neural networks, which, given 

enough training examples, can perform remarkably well. The first layer takes 

raw data as input, and combines it in various ways, passing the result on to 

another layer, and so on. Each layer analyzes different features and adjusts 

its model in response to training data so as to improve the overall 

effectiveness. Eventually, the combined models yield superior results for the 

task at hand.78 

Deep Learning has led to breakthroughs in speech and image 

recognition, as well as fact-based question answering.79 What these problems 

have in common is the availability of a vast number of training examples 

from which to derive models. 

While machine learning represents the current state of the art for the 

three abstract AI problems outlined above, other approaches have been 

used—and continue to be used and promoted—as AI. In particular, a rule 

base is simply a set of rules or patterns designed to specify the outcome for 

all possible inputs.80 A rule base may take the form of a decision tree or a 

flowchart working through the possibilities in a systematic fashion. The 

possible outcomes at each level are enumerated by subject-matter experts 

(“SMEs”) in collaboration with rule-base experts, often statisticians or 

linguists. A rule base may take the form of a number of “patterns” 

designed—again by SMEs in collaboration with technical experts—to 

recognize the features that distinguish one class from another.81 Flowcharts 

or patterns may be augmented with scores—again manually determined—

that may be used for ranking or regression.82 

 

 77 For a more technical discussion of deep learning, see Yann LeCun et al., Deep Learning, 521 

NATURE 436, 436–42 (2015). 

 78 See LeCun et al., supra note 77. 

 79 See id. See also Yashvardhan Sharma & Sahil Gupta, Deep Learning Approaches for Question 

Answering System, 132 PROCEDIA COMPUT. SCI. 785, 786 (2018). 

 80 See Frederick Hayes-Roth, Rule-Based Systems, 28 COMMC’N OF THE ACM 921, 921–22 (1985). 

See generally Randall Davis & Jonathan J. King, The Origin of Rule-Based Systems in AI, reprinted in 

RULE-BASED EXPERT SYSTEMS: THE MYCIN EXPERIMENTS OF THE STANFORD HEURISTIC 

PROGRAMMING PROJECT (Addison-Wesley Pub. Co. 1984), http://digilib.stmik-

banjarbaru.ac.id/data.bc/2.%20AI/2.%20AI/1984%20Rule-Based%20Expert%20Systems.pdf 

[https://perma.cc/AP2A-SM94]. 

 81 See Hayes-Roth, supra note 80. 

 82 See Penka Georgieva, Fuzzy Rule-Based Systems for Decision-Making, 53 J. BULGARIAN ACAD. 

SCI. 5, 10–14 (2016). 
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Familiar examples of rule bases include the flow charts used by a call 

center, the scoring systems used by Consumer Reports, or the complex 

Boolean searches used to identify potentially relevant documents in a 

responding party’s email during the process of electronic discovery. Because 

they are familiar, they typically offer comfort—often undeserved—from the 

sense that we can understand how they operate. But rule bases, and all 

attempts to codify human behavior, have unintended consequences, and 

absent formal evaluation, are of questionable effectiveness. 

In a seminal 1985 study,83 Blair and Maron had lawyers and paralegals 

construct Boolean queries and then review the resulting documents until they 

believed they had found at least 75% of those that were relevant to each of 

51 different aspects (i.e., essentially topics or requests for production) related 

to a San Francisco Bay Area Rapid Transit (“BART”) train accident. These 

search and retrieval efforts found, on average, only 20% of the documents 

relevant to each aspect. This result indicates that humans are not nearly as 

good at constructing Boolean queries—or any other sort of rules—as they 

may think they are. That is why rule-base approaches are typically time 

consuming and require experts and validation processes. 

But manually constructed rules offer transparency that machine-learned 

models do not; particularly the models that result from Deep Learning, which 

are generally not well understood by their developers, if at all. Users can 

observe and understand the mechanics of how rules work, from which it is 

all too easy for them to draw specious conclusions regarding how effectively 

they achieve their intended purposes. Often, however, it is the less 

transparent algorithms that have better predictive power.84 

Some automated learned models are more transparent than others, for 

example, if the feature engineering is straightforward and the method of 

combining evidence from the features is not too complicated. We can easily 

comprehend the process of dividing text into words, and even without 

understanding the formula, we can understand that each word might have a 

score indicating the weight of evidence that it conveys. We can display the 

top-scoring words that contribute to the classification or ranking of a 

document. Some learned models are in essence decision trees or Boolean 

queries. These models closely resemble rule bases that might be constructed 

manually, offering a measure of transparency. But they are typically more 

 

 83 David C. Blair & M.E. Maron, An Evaluation of Retrieval Effectiveness for a Full-Text Document-

Retrieval System, 28 COMM’NS ACM 289, 289 (1985). 

 84 See, e.g., Grant Duwe and Kim KiDeuk, Sacrificing Accuracy for Transparency in Recidivism Risk 

Assessment: The Impact of Classification Method on Predictive Performance, 1 CORRECTIONS 155, 155–

76 (2016), https://www.tandfonline.com/doi/pdf/10.1080/23774657.2016.1178083 (last visited Nov. 15, 

2021). 
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complex and so, notwithstanding their apparent transparency, they are not as 

easily understood as more straightforward manually constructed rule bases. 

Other learned models, including those underlying state-of-the-art image 

recognition, voice recognition, and translation methods, are inscrutable to 

humans. In face recognition, for example, several layers will group together 

increasingly abstract features, which only vaguely correspond to features a 

human would recognize, such as eyes, ears, and hair color.85 The issues that 

arise are illustrated by those that arise in DNA analysis—a high-profile 

classification problem.86 No human can work through the operation of the 

classification algorithm, but after many years, the results have been shown 

to be much more reliable than more “transparent” alternatives. 

Closely associated with the current wave of AI enthusiasm are the 

notions of “big data,” “data analytics,” “data mining,” and “data science.” 

“Big data” refers to the algorithms and techniques used to harness a massive 

glut of raw data, as opposed to the carefully curated information stored in a 

structured database.87 “Data analytics”88 and “data mining”89 refer to 

processes for harvesting previously unknown information from a vast sea of 

raw data, while “data science” refers to the practice of performing data 

analytics or data mining.90 Arguably, public-health researchers and 

meteorologists have been doing “data science” for years without labeling 

their efforts as such, but as for DNA testing, whether or not these pursuits 

are AI is a distinction without a difference. Data analytics in law is typically 

used to respond to questions facing lawyers that ought to have data-driven 

 

 85 See OMAR M. PARKHI ET AL., DEEP FACE RECOGNITION 1, 2, 5–8 (Xianghua Xie et al. eds., BMVA 

Press 2015). 

 86 DNA analysis is not commonly referred to as AI, but it addresses a classification problem that at 

one time was considered the exclusive domain of human perception and intellect. The same can be said 

for weather forecasting. 

 87 See Troy Segal, Big Data, INVESTOPEDIA (Jan. 1, 2021), 

https://www.investopedia.com/terms/b/big-data.asp [https://perma.cc/EV97-NVC2]; see also Big Data: 

What It Is and Why It Matters, SAS, https://www.sas.com/en_ca/insights/big-data/what-is-big-data.html 

[https://perma.cc/46RN-6TCG]; see also What is Big Data?, ORACLE CANADA, 

https://www.oracle.com/ca-en/big-data/what-is-big-data.html [https://perma.cc/WSH3-4PXT]. 

 88 See Jake Frankenfield, Data Analytics, INVESTOPEDIA (Sept. 4, 2021), 

https://www.investopedia.com/terms/d/data-analytics.asp [https://perma.cc/SFQ5-NV29]; Big Data 

Analytics: What It Is and Why It Matters, SAS, https://www.sas.com/en_ca/insights/analytics/big-data-

analytics.html [https://perma.cc/K8AE-DJ8T]. 

 89 See Alexandra Twin, Data Mining, INVESTOPEDIA (Sept. 17, 2021), 

https://www.investopedia.com/terms/d/datamining.asp [https://perma.cc/Z225-6DM2]; see also Data 

Mining: What It Is & Why It Matters, SAS, https://www.sas.com/en_ca/insights/analytics/data-

mining.html [https://perma.cc/Q3J9-V6GX]. 

 90 See Caroline Banton, Data Science, INVESTOPEDIA (Sept. 12, 2021), 

https://www.investopedia.com/terms/d/data-science.asp [https://perma.cc/N2BH-KWSG]; see also What 

Is Data Science?, ORACLE CANADA, https://www.oracle.com/ca-en/data-science/what-is-data-

science.html [https://perma.cc/6598-8UYU]. 
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answers, such as: “What is the market for this [product or service]?”; “How 

long is this going to take and what will it cost?”; “Which 

[jurisdiction/court/judge/argument] is most likely to result in a favorable 

outcome?”; “What has [our firm/opposing counsel/the judge] done in the 

past?; “How big is the risk?” 

To the extent that AI techniques are used to do classification, ranking, 

or regression, their effectiveness can be measured and compared to current 

best practice, given enough examples representative of best practice.91 If, on 

the other hand, the techniques are used to cluster data, to detect anomalies, 

or to predict exceedingly rare events, it is quite difficult to establish their 

efficacy and reliability. 

One of the authors of this paper (Cormack) had an unfortunate 

interaction with two anomaly detection algorithms. After using his credit 

card at New York’s JFK airport in the afternoon, at Los Angeles’ LAX 

airport in the evening, and at Brisbane’s BNE airport the following morning, 

his credit card ceased working, because the issuing bank’s fraud-detection 

software flagged it. At the same time, the bank left a phone message on the 

author’s voicemail, but the email notification of that message was flagged as 

spam and was not delivered by the email provider (who was one and the 

same as the voicemail provider). As a result, the credit card could not be used 

for the duration of the author’s trip to Australia. After contacting the bank 

and learning of their attempt to call him, the author also discovered several 

voicemail messages from the Canada Revenue Agency (“CRA”), which 

were also flagged as spam. Arguably, neither blocking the credit card nor 

blocking the messages from the bank and the government would be 

considered reasonable human errors. Whether or not the fraud-detection and 

email-filtering AI methods would be considered reasonable would depend 

on their overall accuracy: How often do they make such errors versus how 

often do they not? It would also depend on their reliability with respect to 

similar situations: A fraud-detection method that flagged every trip to 

Australia would not be considered reasonable, even though trips to Australia 

for the author are rare events; a spam filter than blocked all voicemail 

messages from CRA would not be considered reasonable, even if CRA rarely 

calls the author. 

 

 91 See generally ALICE ZHENG, EVALUATING MACHINE LEARNING MODELS: A BEGINNERS GUIDE 

TO KEY CONCEPTS AND PITFALLS (O’Reilly Media 2015), 

https://www.scribd.com/document/465392869/Evaluating-Machine-Learning-Models 

[https://perma.cc/E9G3-DPLY]. 
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While issues concerning the validity and reliability92 of AI methods for 

their intended purposes are addressed in more detail later this paper, they are 

often eschewed in the rush to market,93 even though they are critical to 

assessing AI technologies and, in particular, the value of the output as 

evidence in litigation. We will discuss this issue further in section VII below. 

IV.    USES OF AI IN BUSINESS AND LAW TODAY 

In recent years, AI has made major inroads in many fields, including 

health care, education, employment, banking and finance, policing, and the 

criminal justice system, to name but a few. Before the COVID 19 pandemic 

hit, a Canadian-based company, BlueDot, used AI to identify an emerging 

health risk in China on December 31, 2019, and subsequently, to predict the 

global spread of the disease.94 Two of the authors of this paper (Grossman 

and Cormack) used supervised machine learning to assist medical 

researchers at St. Michael’s Hospital in Toronto, working in conjunction 

with the Canadian Frailty Network, Health Canada, and the World Health 

Organization (“WHO”) to perform rapid systematic reviews to identify 

scientific studies related to methods for preventing the transmission of 

Coronavirus in older adults living in long-term care, and to determine the 

effectiveness and safety of therapeutic options for COVID-19 and other 

Coronaviruses that cause serious respiratory infections, by searching 

massive medical publication and pre-print services that were constantly 

updating.95 Using AI, they were able to hasten a task that normally can take 

 

 92 Validity refers to the degree to which an AI tool measures what it purports to measure. Reliability 

refers to the consistency with which it does so. Valid algorithms are accurate predictors; reliable 

algorithms reach the similar conclusions in similar circumstances over time. One useful classification 

scheme further subdivides validity into “construct validity,” i.e., whether the measurements derived from 

the data measure what we think they measure, “internal validity,” i.e., whether the analysis correctly leads 

from the measurements to the conclusions reached, and “external validity,” i.e., whether and the extent 

to which findings from the measurements can be generalized to other situations. See Alexandra Olteanu 

et al., Social Data: Biases, Methodological Pitfalls, and Ethical Boundaries, FRONTIERS BIG DATA, July 

11, 2019, at 1, 4–5. 

 93 Indeed, one commentator has even connected the appearance of big data with the demise of the 

scientific method. “[F]aced with massive data, [the scientific approach]—hypothesize, model, test—is 

becoming obsolete. . . . Petabytes allow us to say: ‘Correlation is enough.’ We can stop looking for 

models. We can analyze the data without hypotheses about what it might show. We can throw the numbers 

into the biggest computing clusters the world has ever seen and let statistical algorithms find patterns 

where science cannot.” Chris Anderson, The End of Theory: The Data Deluge Makes the Scientific 

Method Obsolete, WIRED (June 23, 2008, 12:00 PM), https://www.wired.com/2008/06/pb-theory 

[https://perma.cc/XC8G-T54X]. 

 94 See Bill Whitaker, The Computer Algorithm that Was Among the First to Detect the Coronavirus 

Outbreak, 60 MINUTES (April 27, 2020), https://www.cbsnews.com/news/coronavirus-outbreak-

computer-algorithm-artificial-intelligence [https://perma.cc/8NBN-RMHD]. 

 95 “A systematic review attempts to identify, appraise and synthesize all the empirical evidence that 

meets pre-specified eligibility criteria to answer a specific research question. Researchers conducting 
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a year or more to less than two weeks. For a number of years, dermatologists 

have used AI to help predict skin cancers,96 and radiologists have used AI to 

help determine whether patients have breast cancer, often more accurately 

than they can do on their own, unaided by such technology.97 

AI has also been used to evaluate the performance of teachers,98 to 

determine who gets job interviews,99 and in credit forecasting for loans,100 

 

systematic reviews use explicit, systematic methods that are selected with a view aimed at minimizing 

bias, to produce more reliable findings to inform decision making. . . . A Cochrane Review is a systematic 

review of research in health care and health policy that is published in the Cochrane Database of 

Systematic Reviews.” About, COCHRANE LIBR., https://www.cochranelibrary.com/about/about-cochrane-

reviews [https://perma.cc/6DX7-P97M] (last visited Jan. 22, 2021). A rapid (systematic) review is one 

that is typically completed in five weeks or less, although the time frame can vary. See Systematic Reviews 

and Other Review Types, TEMP. U. LIBR., https://guides.temple.edu/c.php?g=78618&p=4156608 

[https://perma.cc/6364-75VJ]. For authors Grossman and Cormack’s systematic reviews related to 

COVID-19, see Patricia Rios et al., Preventing the Transmission of COVID-19 and Other Coronaviruses 

in Older Adults Aged 60 Years and Above Living in Long-Term Care: A Rapid Review, 9 SYS. REV. 118 

(2020); Patricia Rios et al., Effectiveness and Safety of Pharmacological Treatments for COVID-19: A 

Rapid Scoping Review, BR. MED. J. (forthcoming 2022). 

 96 See generally Andre Esteva et al, Dermatologist-Level Classification of Skin Cancers with Deep 

Neural Networks, 542 NATURE 115 (2017); Kara Mayer Robinson, How Artificial Intelligence Helps 

Diagnose Skin Cancer, WEBMD,https://www.webmd.com/melanoma-skin-cancer/features/ai-skin-

cancer#1 [https://perma.cc/K3GZ-CMHL]. 

 97 See generally Scott May McKinney et al., International Evaluation of an AI System for Breast 

Cancer Screening, 577 NATURE 89 (2020); Hannah Slater, AI Assisted Radiologists See Improved 

Performance in Detection of Breast Cancer, CANCER NETWORK (Feb. 29, 2020), 

https://www.cancernetwork.com/view/ai-assisted-radiologists-see-improved-performance-detection-

breast-cancer [https://perma.cc/N7Y8-4M2C]; Fergus Walsh, AI ‘Outperforms’ Doctors Diagnosing 

Breast Cancer, BBC NEWS (Jan. 2, 2020), https://www.bbc.com/news/health-50857759 

[https://perma.cc/W2YJ-GEPQ]. 

 98 See generally Hous. Fed’n of Teachers, Loc. 2415 v. Hous. Indep. Sch. Dist., 251 F. Supp. 3d 1168 

(S.D. Tex. 2017) (lawsuit challenging use of AI to evaluate teacher performance); CATHY O’NEIL, 

Sweating Bullets: On the Job, in WEAPONS OF MATH DESTRUCTION: HOW BIG DATA INCREASES 

INEQUALITY AND THREATENS DEMOCRACY (Crown Publishers 2016). For a discussion of the use of AI 

tools for the purposes of law firm recruitment see Victoria Hudgins, Diversity, Metrics Demands Are 

Pushing Firms to Embrace AI Hiring Tools, LEGALTECH NEWS (Jan. 13, 2021, 12:15 PM), 

https://www.law.com/legaltechnews/2021/01/13/diversity-metrics-demands-are-pushing-firms-to-

embrace-ai-hiring-tools [https://perma.cc/3FYZ-TXJ5]. 

 99 Rebecca Heilweil, Artificial Intelligence Will Help Determine If You Will Get Your Next Job, VOX 

(Dec. 12, 2019, 8:00 AM EST), https://www.vox.com/recode/2019/12/12/20993665/artificial-

intelligence-ai-job-screen [https://perma.cc/M9WL-T87J]. 

 100 Zoran Ereiz, Predicting Default Loans Using Machine Learning (OptiML), 2019 27TH 

TELECOMMS. F. (TELFOR) 1 (2019); Daniel Faggella, Artificial Intelligence Applications for Lending 

and Loan Management, EMERJ: THE AI RESEARCH AND ADVISORY COMPANY (Apr. 3, 2020), 

https://emerj.com/ai-sector-overviews/artificial-intelligence-applications-lending-loan-management 

[https://perma.cc/R9RD-73QY]. 
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mortgages,101 and credit cards102—sometimes resulting in high-profile 

scandals involving the potential for bias in such systems.103 AI has long been 

used in Fintech for high-speed securities trading,104 where the advantage of a 

few milliseconds can result in huge financial gains. The number of new 

applications of AI that emerge each week is staggering.105 

AI has also entered the legal realm in numerous ways,106 some more 

risky and harmful than others. In addition to the use of data analytics and 

technology-assisted review in electronic discovery, ever since TAR was first 

approved by the courts in 2012,107 machine-learning technologies have also 

been used for contract management and for due-diligence reviews in mergers 

and acquisitions,108 for public disclosure analytics,109 for natural-language 

 

 101 Lin Zhu et al., A Study on Predicting Loan Default Based on the Random Forest Algorithm, 162 

PROCEDIA COMPUT. SCI. 503, 508–09 (2019), 

https://www.sciencedirect.com/science/article/pii/S1877050919320277 [https://perma.cc/KV84-VQT4]; 

Michael J. Cooper, A Deep Learning Prediction Model for Mortgage Default (May 2018) (Master’s 

thesis, University of Bristol) (ResearchGate). 

 102 Scott Zoldi, How to Build Credit Risk Models Using Artificial Intelligence and Machine Learning, 

FICO: BLOG (Apr. 6, 2017), https://www.fico.com/blogs/how-build-credit-risk-models-using-ai-and-

machine-learning [https://perma.cc/H893-CJ94]; Risk and Reward: The Role of AI in Acquiring Credit 

Card Prospects, APPIER (Oct. 17, 2019), https://www.appier.com/blog/risk-and-reward-the-role-of-ai-in-

acquiring-credit-card-prospects [https://perma.cc/72B5-95V2]. 

 103 See, e.g., Jeffrey Dastin, Amazon Scraps Secret AI Recruiting Tool that Showed Bias Against 

Women, Reuters (Oct. 10, 2018, 6:04 PM), https://www.reuters.com/article/us-amazon-com-jobs-

automation-insight-idUSKCN1MK08G [https://perma.cc/A2ZE-64J4]; Neil Vigor, Apple Card 

Investigated After Gender Discrimination Complaints, N.Y. TIMES (Nov. 10, 2019), 

https://www.nytimes.com/2019/11/10/business/Apple-credit-card-investigation.html 

[https://perma.cc/5JES-6ZUW]. 

 104 See JASMINA ARIFOVIC ET AL., HIGH FREQUENCY TRADING IN FINTECH AGE: AI WITH SPEED 

(SSRN 2019), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2771153 [https://perma.cc/L9JV-

UNCM]. 

 105 For a compendium of AI applications across all domains, the reader can register for the weekly 

Cognitive RoundUp from SwissCognitive − The Global AI Hub, SWISSCOGNITIVE, 

https://swisscognitive.ch [https://perma.cc/H5KB-YCDX]. 

 106 For a compendium of AI applications in law and legal practice, the reader is referred to Daniel 

Faggella, AI in Law and Legal Practice – A Comprehensive View of 35 Current Applications, EMERJ: 

THE AI RESEARCH AND ADVISORY COMPANY (Mar. 14, 2020), https://emerj.com/ai-sector-overviews/ai-

in-law-legal-practice-current-applications [https://perma.cc/GLS7-8X2R]. 

 107 See Da Silva Moore v. Publicis Groupe, 287 F.R.D. 182 (S.D.N.Y 2012), adopted sub nom. 

Moore v. Publicis Groupe SA, No. 11 CIV. 1279 ALC AJP, 2012 WL 1446534 (S.D.N.Y. Apr. 26, 2012), 

(first federal case); Glob. Aerospace Inc. v. Landow Aviation, L.P., No. CL 61040 (Vir. Cir. Ct. Apr. 23, 

2012) (first state case). 

 108 Brittainy Boessel, The Role of AI in Contract Management, KIRA (June 15, 2020), 

https://kirasystems.com/learn/role-of-ai-in-contract-management [https://perma.cc/7F26-R9UG]; Ellie 

Nikolova, AI’s Role in Mergers and Acquisitions, CORP. L.J. (Sept. 25, 2019), 

https://www.thecorporatelawjournal.com/technology/ais-role-in-mergers-and-acquisitions 

[https://perma.cc/B738-CUCP]. 

 109 For an example of an AI tool that analyzes SEC filings and associated exhibits, see LEXISNEXIS’ 

Intelligize, https://www.intelligize.com/products/intelligize [https://perma.cc/3482-C77E]. 
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legal research inquiries,110 for legal brief analytics,111 for drafting of legal 

memoranda and pleadings,112 for litigation forecasting for the purposes of 

litigation funding,113 for review of legal billing,114 and even in bots employed 

to analyze claims and to complete forms to improve access to justice.115 

 

 110 Nicole Black, Lawyers Have a Bevy of Advanced and AI-Enhanced Legal Research Tools at Their 

Fingertips, ABA J. (Nov. 22, 2019), https://www.abajournal.com/web/article/lawyers-have-a-bevy-of-

advanced-and-ai-enhanced-legal-research-tools-at-their-fingertips [https://perma.cc/9QA3-TSW3]. 

 111 For examples of AI tools that can analyze briefs to find and recommend the most on-point 

authorities or to uncover cases that opposing counsel has failed to cite, see CARA A.I., 

https://casetext.com/cara-ai [https://perma.cc/84BY-YEB3] or Brief Analyzer, 

https://pro.bloomberglaw.com/brief-analyzer [https://perma.cc/LS9M-5HPP]. There is even an AI brief-

checking tool designed specifically for judges: Quick Check Judicial, 

https://legal.thomsonreuters.com/en/c/quick-check-judicial-on-westlaw-

edge?cid=9023855&sfdccampaignid=7014O000001iorNQAQ&chl=pr [https://perma.cc/FH8S-3MEJ]. 

 112 For an example of an AI tool that can provide responses to legal questions in a memo form, see 

Alexsei, https://www.alexsei.com [https://perma.cc/2QVU-E3D9]. For examples of AI tools that 

automate the preparation of the first draft of legal pleadings or briefs, respectively, see LegalMation®, 

https://www.legalmation.com [https://perma.cc/XMP6-JC5Z], and see Compose, https://compose.law 

[https://perma.cc/PM85-WWK2] . 

 113 “Legalist, a legal startup backed by PayPal co-founder Peter Thiel, bills itself as ‘the first AI-

powered litigation finance firm.’” AI-Powered Litigation Finance Firm Offer Bounty to Sexual 

Harassment Victims, LEGAL TECH BLOG (Oct. 19, 2017), https://legal-tech-blog.de/ai-powered-

litigation-finance-firm-offers-bounty-to-sexual-harassment-victims [https://perma.cc/T3DF-WH5M]; 

see also Bob Ambrogi, Litigation Finance Startup Legalist Raises $100 Million to Fund Lawsuits, 

LAWSITES (Sept. 19, 2019), https://www.lawsitesblog.com/2019/09/litigation-finance-startup-legalist-

raises-100-million-to-fund-lawsuits.html [https://perma.cc/YB5X-DRB9] (“Legalist leads the new wave 

of technologists using artificial intelligence and machine learning to streamline and underwrite litigation 

investments.”). 

 114 For examples of AI tools used for automated review of legal bills, see Bilr, 

https://www.getbilr.com/legal-invoice-review [https://perma.cc/ZR5N-RMXL], and see Brightflag, 

https://brightflag.com [https://perma.cc/W332-WQCG] . 

 115 Luke Dormehl, Meet the British Whiz Kid Who Fights Justice with a Robo-Lawyer Sidekick, 

DIGITALTRENDS (March 25, 2018), https://www.digitaltrends.com/cool-tech/robot-lawyer-free-acess-

justice [https://perma.cc/BV2E-LPKS] (discussing Joshua Browder’s DoNotPay chatbot that has helped 

to successfully appeal millions of dollars’ worth of parking tickets); Luis Millán, AI Initiative Seeks to 

Improve Access to Justice, Law in Quebec (Jan. 13, 2020),https://lawinquebec.com/ai-initiative-seeks-to-

improve-access-to-justice [https://perma.cc/Y7GZ-VEBP]. For a comprehensive discussion of the pros 

and cons of the use of AI to address “the justice gap,” see Katherine L.W. Norton, The Middle Ground: 

A Meaningful Balance Between the Benefits and Limitations of Artificial Intelligence to Assist with the 

Justice Gap, 75 U. MIA. L. REV. 190 (2020). 
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Perhaps of greater interest (and concern) to the present audience is software 

used to analyze opposing counsel or judges,116 and for online adjudication.117 

More controversial uses lie in the area of law enforcement and the 

criminal justice system, including algorithms used for predictive policing, 

facial recognition, bail setting, and sentencing decisions. These contexts 

pose higher risk of harm than many of the aforementioned uses and are more 

likely to come to the attention of judicial officers. 

Predictive Policing has been around for some time. In or about 2010 or 

2011, UCLA scientists working with the Los Angeles Police Department 

(“LAPD”) developed a software program called PredPol, designed to 

analyze crime data to spot patterns of criminal behavior, so that police could 

intervene in predicted high-crime areas to prevent crimes from happening.118 

The software is now used by more than 60 police departments around the 

country to identify neighborhoods where serious crimes are more likely to 

occur during particular periods of time.119 The company that designed the 

software claims that its research has shown that it is “twice as accurate as 

human analysts” in predicting where crimes will take place, but these self-

 

 116 For examples of AI tools that may be used for legal analytics involving opposing counsel, judges, 

or courts, see Lex Machina Legal Analytics Platform, https://lexmachina.com/legal-analytics 

[https://perma.cc/A56Z-F49H]; Premonition, https://premonition.ai [https://perma.cc/2S4L-QGBN]; and 

Context, Ravel, https://home.ravellaw.com [https://perma.cc/L2EB-QEQW]. Note that France banned the 

use of judicial analytics in Article 33 of the Justice Reform Act of Mar. 23, 2019. A violation of the law 

can result in a criminal penalty of up to five years in prison. Jason Tashea, France Bans Publishing of 

Judicial Analytics and Prompts Criminal Penalties, ABA J. (June 7, 2019), 

https://www.abajournal.com/news/article/france-bans-and-creates-criminal-penalty-for-judicial-

analytics [https://perma.cc/C2LH-C4PH]. 

 117 Carole Piovesan & Vivian Ntiri, Adjudication by Algorithm: The Risks and Benefits of Artificial 

Intelligence in Judicial Decision-Making, ADVOCS.’ J. 42 (2018), 

https://marcomm.mccarthy.ca/pubs/Spring-2018-Journal_Piovesan-and-Ntiri-article.pdf (discussing use 

of AI technology and online dispute resolution for low-value claims). See also Eric Niiler, Can AI Be a 

Fair Judge in Court? Estonia Thinks So, WIRED (Mar. 25, 2019), https://www.wired.com/story/can-ai-

be-fair-judge-court-estonia-thinks-so [https://perma.cc/BJM5-3JU5] (last visited Jan. 22, 2021). 

 118 Randy Rieland, Artificial Intelligence Is Now Used to Predict Crime. But Is It Biased?, 

SMITHSONIAN MAG. (Mar. 5, 2018), https://www.smithsonianmag.com/innovation/artificial-

intelligence-is-now-used-predict-crime-is-it-biased-180968337 [https://perma.cc/RVK9-R44G]. There is 

considerable debate over whether the LAPD’s predictive tool is effective. Compare Stuart Wolpert, 

Predictive Policing Substantially Reduces Crime in Los Angeles During Months-Long Test, UCLA 

NEWSROOM (Oct. 7, 2015), https://newsroom.ucla.edu/releases/predictive-policing-substantially-

reduces-crime-in-los-angeles-during-months-long-test [https://perma.cc/2E93-WDGA] with Mark 

Puente, LAPD Pioneered Predicting Crime with Data. Many Police Don’t Think It Works, L.A. TIMES 

(July 3, 2019),https://www.latimes.com/local/lanow/la-me-lapd-precision-policing-data-20190703-

story.html [https://perma.cc/2PPC-LB2T]. With more and more critics—particularly with respect to its 

potentially discriminatory impact on minority populations—predictive policing “may be falling out of 

fashion.” Eva Ruth Moravec, Do Algorithms Have a Place in Policing?, ATLANTIC (Sept. 5, 2019), 

https://www.theatlantic.com/politics/archive/2019/09/do-algorithms-have-place-policing/596851 

[https://perma.cc/8VXK-H95J]. 

 119 Rieland, supra note 118. 
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reported results have not been independently verified.120 The City of Chicago 

took crime projection a step further by building a “Strategic Subject List” of 

individuals “most likely to be involved in future shootings,” either as 

perpetrators or victims.121 The American Civil Liberties Union (“ACLU”), 

the Brennan Center for Justice, and other civil rights organizations have 

sounded the alarm about the risk of bias inherent in such prediction software 

because historical data from police practices is used to train the algorithm, 

leading to a feedback loop through which the software makes forward-

looking decisions that both reflect and reinforce past beliefs about which 

neighborhoods (or which people) are “safe” or “dangerous.”122 Software that 

relies on arrest data carries an even higher degree of risk of bias than software 

based on, for example, convictions, because it is more reflective of police 

practices than actual crime. 123 After all, police only arrest people for crimes 

where they look for them. 

Facial recognition by police has recently come under greater scrutiny. 

In June 2020, the New York Times reported on the first-known case where a 

faulty facial recognition match led to the arrest of a Michigan man for a crime 

he did not commit.124 The man was handcuffed on his front lawn, in front of 

his wife and two young daughters, and subsequently booked and held 

overnight for allegedly shoplifting five watches worth $3,800 from an 

upscale Detroit boutique, based on a grainy still image retrieved from a 

surveillance video that was incorrectly matched to the man’s driver’s license 

photo by a facial recognition algorithm used to search a police database of 

49 million photos.125 Apparently, without much further investigation, the 

detectives simply included the large Black man’s picture in a six-pack photo 

lineup that they showed to the store’s loss-prevention coordinator—who had 

previously reviewed the store’s surveillance video and sent a copy to the 

Detroit police—and she subsequently identified the man as the perpetrator.126 

 

 120 Id. 

 121 Id. The controversial eight-year program was quietly retired in early 2020. Jeremy Gorner & 

Annie Sweeney, For Years Chicago Police Rated the Risk of Tens of Thousands Being Caught Up in 

Violence. That Controversial Cffort Has Quietly Been Ended., CHI. TRIB. (Jan. 24, 2020), 

https://www.chicagotribune.com/news/criminal-justice/ct-chicago-police-strategic-subject-list-ended-

20200125-spn4kjmrxrh4tmktdjckhtox4i-story.html [https://perma.cc/U73T-3CZC]. 

 122 Rieland, supra note 118. 

 123 Id. 

 124 Kashmir Hill, Wrongfully Accused by an Algorithm, N.Y. TIMES (June 24, 2020), 

https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html 

[https://perma.cc/B6VA-2HS8]. 

 125 Id. 

 126 Id. Apparently, this did not turn out to be the first such event. An earlier misidentification occurred 

in May 2019 when the Detroit Police wrongly charged a 25-year-old Black man of felony larceny for 

allegedly reaching into a teacher’s vehicle, grabbing a cellphone, and throwing it, resulting in a cracked 
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Facial recognition systems have been used by police for more than two 

decades.127 Recent studies conducted by researchers at the Massachusetts 

Institute of technology (“MIT”) and Microsoft Research, as well as at NIST, 

have found that while the technology works relatively well on White men, 

the results are less accurate for other demographics, in part, because they are 

less well represented in the sources of the images used to train the 

algorithms.128 These AI tools are reported to falsely identify African 

American and Asian faces between 10 and 100 times more often than 

Caucasian faces.129 In the same month as the New York Times reported on the 

Michigan misidentification case, Amazon, Microsoft, and IBM announced 

that they planned to cease—or at least pause—their facial recognition 

offerings for law enforcement.130 But these are not the big players in this 

industry,131 so the use of these technologies by police departments continues 

 

screen and broken case. Elisha Anderson, Controversial Detroit Facial Recognition Got Him Arrested 

for a Crime He Didn’t Commit, DETROIT FREE PRESS (July 10, 2020), 

https://www.freep.com/story/news/local/michigan/detroit/2020/07/10/facial-recognition-detroit-

michael-oliver-robert-williams/5392166002 [https://perma.cc/87FH-K9FR]. Since the publication of 

these two articles, a third misidentification of a Black man using faulty facial recognition has occurred. 

See Kashmir Hill, Another Arrest, and Jail Time, Due to a Bad Facial Recognition Match, N.Y. TIMES 

(Dec. 29, 2020), https://www.nytimes.com/2020/12/29/technology/facial-recognition-misidentify-

jail.html. [https://perma.cc/7ZNP-85K6]. In this instance, a New Jersey man was accused of “shoplifting 

candy and trying to hit a police officer with a car . . . “The man turned out to have been 30 miles away at 

the time of the incident. He spent 10 days in jail and paid approximately $5,000 to defend himself. Id. 

 127 Jennifer Valentino-DeVries, How the Police Use Facial Recognition, and Where It Falls Short, 

N.Y. TIMES (Jan. 12, 2020), https://www.nytimes.com/2020/01/12/technology/facial-recognition-

police.html [https://perma.cc/6QS7-7HH4]. 

 128 Kyle Wiggers, NIST Benchmarks Show Facial Recognition Technology Still Struggles to Identify 

Black Faces, VENTUREBEAT (Sept. 9, 2020), https://venturebeat.com/2020/09/09/nist-benchmarks-

show-facial-recognition-technology-still-struggles-to-identify-black-faces [https://perma.cc/3ANZ-

FQGB]; Larry Hardesty, Study Finds Gender and Skin-Type Bias in Commercial Artificial-Intelligence 

Systems, MIT NEWS (Feb. 11, 2018), https://news.mit.edu/2018/study-finds-gender-skin-type-bias-

artificial-intelligence-systems-0212 [https://perma.cc/N4T9-UKF4]; Steve Lohr, Facial Recognition is 

Accurate if You’re a White Guy, N.Y. TIMES (Feb. 9, 2018),  

https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html 

[https://perma.cc/TD6Z-RPB2]. One of the authors of the MIT/MS Research study (Timnit Gebru) 

claimed that she was later fired by Google because she refused to retract a subsequent paper also on 

responsible AI and algorithmic accountability. See Nitasha Tiku, Google Hired Timnit Gebru to Be an 

Outspoken Critic of Unethical AI. Then She Was Fired for It., WASH. POST (Dec. 23, 2020), 

https://www.washingtonpost.com/technology/2020/12/23/google-timnit-gebru-ai-ethics 

[https://perma.cc/GUA5-X7HM]; Alex Hanna & Meredith Whittaker, Timnit Gebru’s Exit From Google 

Exposes a Crisis in AI, WIRED (Dec. 31, 2020), https://www.wired.com/story/timnit-gebru-exit-google-

exposes-crisis-in-ai [https://perma.cc/ZH4R-D6LG]. 

 129 Natasha Singer & Cade Metz, Many Facial-Recognition Systems Are Biased, Says U.S. Study, 

N.Y. TIMES (Dec. 19, 2019), https://www.nytimes.com/2019/12/19/technology/facial-recognition-

bias.html [https://perma.cc/48NZ-MKVT]. 

 130 Hill, supra note 124. 

 131 The technology that police departments use is supplied by Vigilant Solutions, Cognitec, NEC, 

Rank One Computing, and Clearview AI, and NTech Labs. Hill, supra note 124; Tate Ryan-Mosley, 
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largely unabated.132 Since the Michigan misidentification case was reported, 

at least two more arrests of Black men using faulty facial identification have 

been divulged.133 

Perhaps of even more concern than predictive policing and the use of 

facial recognition by law enforcement is the following. In March, 2016, an 

article published in Pro Publica reported on risk-assessment software called 

the Correctional Offender Management Profiling for Alternative Sanctions 

(“COMPAS”) that was being used, with increasing frequency, across the 

United States to inform—and sometimes to make—decisions about a 

criminal defendant’s or convict’s risk of reoffending during various points 

in the criminal justice system, from pre-trial release, to criminal sentencing 

and probation.134 These tools are vaguely reminiscent of “Minority Report,” 

“1984,” “Black Mirror,” and other dystopian science fiction.135 COMPAS is 

not the only proprietary risk and needs assessment (“RNA”) tool available—

there are over 100 general and specialty tools that have been developed by 

private entities, non-profit organizations, universities, and even states.136 

While most of the tools are computerized to some degree, not all of them 

rely on AI to make predictions. COMPAS does. At the time of the Pro 

Publica article, while dozens of criminal RNA tools were in use, few had 

been independently tested.137 In a 2013 study, researchers Sarah Desmarais 

and Jay Singh examined 19 such tools used across the United States and 

found that “in most cases, validity had been examined in one or two studies,” 

 

There Is a Crisis of Face Recognition and Policing in the US, MIT TECH. REV. (Aug. 14, 2020), 

https://www.technologyreview.com/2020/08/14/1006904/there-is-a-crisis-of-face-recognition-and-

policing-in-the-us [https://perma.cc/D7CX-PDZP]. 

 132 Hill, supra note 124. We do not actually know how often U.S. police departments use facial 

recognition because in most jurisdictions they are not required to report it. The most recent numbers come 

from 2016 and are speculative, but they suggest that at that time, at least half of Americans’ photos were 

contained in a facial recognition system and that one county in Florida ran 8,000 searches each month. 

Ryan-Mosley, supra note 131. 

 133 See supra note 126; Ryan-Mosley supra note 131. 

 134 Julia Angwin et al., Machine Bias, PROPUBLICA (May 23, 2016),  

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing 

[https://perma.cc/H3S4-G7PQ]. 

 135 See Rhys Dipshan et al., The United States of Risk Assessment: The Machines Influencing 

Criminal Justice Decisions, LEGALTECH NEWS (July 13, 2020), 

https://www.law.com/legaltechnews/2020/07/13/the-united-states-of-risk-assessment-the-machines-

influencing-criminal-justice-decisions [https://perma.cc/Q5DV-WN2W]. 

 136 Specialized tools include those used for women or juvenile offenders, and those that assess a 

defendant’s or convict’s likelihood of committing domestic or sexual violence. 

 137 Angwin et al., supra note 134. For a comprehensive critique of “the serious shortcomings of risk 

assessment tools in the U.S. criminal justice system,” including “[c]oncerns about the validity, accuracy, 

and bias in the tools themselves,” see PARTNERSHIP ON AI, Report on Algorithmic Risk Assessment Tools 

in the U.S. Justice System, 2 (2019), https://www.partnershiponai.org/report-on-machine-learning-in-

risk-assessment-tools-in-the-u-s-criminal-justice-system [https://perma.cc/LQR7-3RH7]. 
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and that “frequently, those investigations were completed by the same people 

who developed the instrument.”138 They concluded that the tools “were 

moderate at best in terms of predictive validity.”139 Pro Publica’s own study 

was even more troubling. Their reporters collected the risk scores of more 

than 7,000 people arrested in Broward County, Florida, in 2013 and 2014, 

and followed them to see how many were charged with another crime over 

the following two years, the same benchmark used by COMPAS.140 “The 

score proved remarkably unreliable in forecasting violent crime: Only 20% 

of the people predicted to commit violent crimes actually went on to do 

so.”141 When a full range of crimes was taken into account, “[o]f those 

deemed likely to reoffend, 61% were arrested for any subsequent crimes 

within two years.”142 What Pro Publica found next was even more 

problematic—significant racial disparities: Black offenders were twice as 

likely as White offenders to be incorrectly labeled as high risk (44.85% 

versus 23.45%), while White offenders were twice as likely as Black 

offenders to be incorrectly labeled as low risk (47.72% versus 27.99%).143 

COMPAS’ developer admitted that it was difficult to construct a score that 

did not include items that could be correlated with race—such as poverty, 

joblessness, and social marginalization. “If those are omitted from your risk 

assessment, accuracy goes down.”144 

Defendants rarely have an opportunity to challenge the results of their 

risk and need assessments. While the overall score may be shared with their 

attorney, the algorithm that produced the score, and the underlying data on 

which it relied, are typically not disclosed; they are almost always withheld 

as proprietary trade secrets. This problem was raised in a Wisconsin criminal 

case involving defendant, Eric Loomis, who was a repeat offender labeled 

by COMPAS as high risk to the community.145 Loomis was charged with 

 

 138 Angwin et al, supra note.134. 

 139 Id. 

 140 Id. 

 141 Id. 

 142 Id. 

 143 See id.; see also Jeff Larson et al., How We Analyzed the COMPAS Recidivism Algorithm, PRO 

PUBLICA (May 23, 2016), https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-

algorithm [https://perma.cc/DXW4-ME4E]. However, Pro Publica’s analysis of the COMPAS data is not 

without its critics. See, e.g., Anthony W. Flores et al., False Positives, False Negatives, and False 

Analyses: A Rejoinder to “Machine Bias: There’s Software Used Across the Country to Predict Future 

Criminals. And it’s Biased Against Blacks.”, 80 FED. PROB. 1 (Sept. 2016), 

https://www.researchgate.net/publication/306032039_False_Positives_False_Negatives_and_False_An

alyses_A_Rejoinder_to_Machine_Bias_There%27s_Software_Used_Across_the_Country_to_Predict_

Future_Criminals_And_it%27s_Biased_Against_Blacks [https://perma.cc/D4DS-Z3ZV]. 

 144 Angwin et al., supra note 134. 

 145 Wisconsin v. Loomis, 881 N.W.2d 749, 755 (2016). 



19:1 (2021) AI as Evidence 

41 

driving a stolen vehicle away from the scene of a drive-by shooting and 

fleeing the police.146 The judge in the case imposed a sentence of eleven 

years.147 Loomis challenged the use of the COMPAS score at his sentencing 

as a violation of his due process rights because the proprietary nature of the 

tool prevented him from challenging the scientific validity of the assessment 

(e.g., how COMPAS weighed various factors, how the algorithm calculated 

risk, the impact of the comparator data—which was based on a national not 

a local (i.e., Wisconsin) sample, the fact that some studies of COMPAS’ 

RNA scores had raised questions about whether they disproportionally 

classified minorities as having a higher risk of recidivism, and thus, the 

accuracy of the scores).148 

The case went to the Wisconsin Supreme Court, which pointed out that 

the Presentence Investigation (i) warned that “the COMPAS risk assessment 

does not predict the specific likelihood that an individual will reoffend. 

Instead, it provides a prediction based on a comparison of information about 

the individual to a similar data group,” and (ii) cautioned that “risk scores 

are not intended to determine the severity of a sentence or whether an 

offender is incarcerated.”149 Because the COMPAS risk score was 

accompanied by such admonitions, and was not the sole determinant of the 

Court’s sentencing decision—it was ostensibly used only to corroborate the 

Court’s findings—its use did not violate a Mr. Loomis’ right to due 

process.150 

These examples are only the tip of the iceberg with respect to how 

lawyers and judges can expect AI to arise in the cases they handle, and how 

AI increasingly may be applied in the justice system. 

V.    ISSUES RAISED BY THE USE OF AI IN BUSINESS AND LAW TODAY 

While AI offers great promise for the advancement of social good in 

many domains—including access to justice—it also poses significant risks 

and challenges, some of which are likely apparent from the examples 

provided above. Unfortunately, the benefits and burdens of AI are often not 

equally distributed across society, and we risk losing the benefits if we 

cannot find solutions to the challenges raised by AI. Some of these 

challenges are discussed below. 

 

 146 Id. at 754. 

 147 See Id. at 756 note 18. 

 148 Id. at 756, 760–63. 

 149 Id. at 754, 770. 

 150 See id. at 755, 771–72. 
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A.    Bias 

Bias leading to sometimes intended—but more often unintended—

discriminatory outcomes is a serious problem with AI. There are multiple 

places where bias can impact AI systems, from the inputs to the outputs of 

such systems, and even in the ways in which the outputs are interpreted and 

used by humans.151 

Because machine-learning algorithms are trained using historical data, 

they can serve to perpetuate the very biases they are often intended to 

prevent. Bias in data can occur because the training data is not representative 

of a target population to which the AI system will later be applied. Two high-

profile examples of this problem include Google Photo’s mistaken 

identification of two Black people as gorillas,152 and Amazon’s failed 

experiment with a hiring algorithm that merely replicated the company’s 

existing disproportionately male workforce.153 We see this same problem 

with facial recognition software that has difficulty correctly identifying 

Black women’s faces because they are not adequately reflected in the 

training set.154 Data can also be differentially noisy for different groups, 

meaning that errors are not evenly distributed across the different groups, or 

data may simply be missing for certain groups as compared to others, for 

example, when the data is either unavailable or the collection process is 

incomplete because the techniques used to capture data fail to capture all data 

equally. This is particularly the case when the law prohibits collecting, 

labeling, or using the data of certain protected groups. This can cause other 

problems, for example, when a treatment actually works better for one 

gender or race than another, but the beneficial effect is masked by an overall 

(i.e., combined) accuracy rate that is low, or because the protected data is 

either not collected or not considered by the algorithm.155 Defendant Loomis 

 

 151 For a useful discussion of some of the different types of bias that can impact AI systems, see 

Selena Silva & Martin Kenney, Viewpoint: Algorithms, Platforms, and Ethnic Bias, 62 COMMC’N ACM 

37 (2019), https://cacm.acm.org/magazines/2019/11/240361-algorithms-platforms-and-ethnic-

bias/fulltext [https://perma.cc/JF4P-APNW]. 

 152 Maggie Zhang, Google Photos Tags Two African-Americans As Gorillas Through Facial 

Recognition Software, FORBES (July 1, 2015), https://www.forbes.com/sites/mzhang/2015/07/01/google-

photos-tags-two-african-americans-as-gorillas-through-facial-recognition-software/?sh=23e9c0a3713d 

[https://perma.cc/G5ZW-NDDZ]; Pete Pachal, Google Photos Identified Two Black People As ‘Gorillas,’ 

MASHABLE (July 1, 2015), https://mashable.com/2015/07/01/google-photos-black-people-gorillas 

[https://perma.cc/5RGQ-K5NB]. 

 153 Dastin, supra note 103. 

 154 E.g., Lohr, supra note 128. 

 155 Cf. Heather P. Whitley & Wesley Lindsey, Sex-Based Differences in Drug Activity, 80 AM. FAM. 

PHYSICIAN 1254 (2009), https://www.aafp.org/afp/2009/1201/p1254.html [https://perma.cc/TA2Z-

3WC2]; Valentine J. Burroughset al., Racial and Ethnic Differences in Response to Medicines: Towards 

Individualized Pharmaceutical Treatment, 94 J. NAT’L MED. ASS’N 1 (2002), 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2594139 [https://perma.cc/L8XW-ZAE3]. A similar 
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asserted that the COMPAS tool discriminated on the basis of gender because 

the tool assessed male and female offenders separately due to the fact that 

research has shown that female offenders are different from male 

offenders.156 Thus, it is not always clear when information about protected 

classes should and should not be used by AI. 

Data can also be biased for the reason that while an AI system may not 

take a protected class label or feature such as race directly into account, the 

data includes proxies for that label or feature that the algorithm does 

consider. For example, the COMPAS tool asks for information about arrests 

for drug possession and use.157 It is well known that Black people are arrested 

for drug possession and use many times more often than White people,158 so 

this question is a ready proxy for race, as are many other features like zip 

code, education, employment, and incarceration. When arrest records for 

drug use are used as a predictor in RNA algorithms, they may be more 

reflective of police activity than recidivism risk and can therefore lead to 

 

problem can occur when an algorithm fails to take racial differences into account when it should. In one 

prominent example, a health-care algorithm used health-care costs as a proxy for health-care needs, 

without taking into account the fact that unequal access to health care meant that less money was spent 

caring for Black patients than White patients. Thus, at the same score on the predictive measure, Black 

patients were considerably sicker than White patients, but were systematically offered less care. Ziad 

Obermeyer et al., Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations, 366 

SCI. 447, 453 (2019), https://science.sciencemag.org/content/366/6464/447/tab-pdf 

[https://perma.cc/NB9D-XN4Q]. Tom Simonite, A Health Care Algorithm Offered Less Care to Black 

Patients, WIRED (Oct. 24, 2019), https://www.wired.com/story/how-algorithm-favored-whites-over-

blacks-health-care [https://perma.cc/ZPG7-ND4U]. 

 156 See Loomis, 881 N.W.2d at 765–66; see also Rhys Dipshan, Constitutional Brawl Looms Over 

How Risk Assessment Tools Account for Gender, LEGALTECH NEWS (July 20, 2020), 

https://www.law.com/legaltechnews/2020/07/20/constitutional-brawl-looms-over-how-risk-assessment-

tools-account-for-gender [https://perma.cc/YN6J-3F3S]. 

 157 See Risk Assessment, Northpointe Suite v. 8.1.18.12 (Northpointe, Inc. 2011) (“19. How many 

prior possession/use offense arrests as an adult?”) (copy on file with author Grossman). 

 158 See Rhys Dipshan & Victoria Hudgens, Risk Assessment Tools Aren’t Immune From Systemic 

Bias. So Why Use Them?, LEGALTECH NEWS (July 17, 2020), 

https://www.law.com/legaltechnews/2020/07/17/risk-assessment-tools-arent-immune-from-systemic-

bias-so-why-use-them [https://perma.cc/QST5-LTQA]. Dr. Jennifer Skeem, Professor of Public Policy at 

the University of California, Berkeley “notes that, where possible, tools should avoid criteria that [are] 

impacted by the differential treatment African Americans receive in the criminal justice system. ‘A really 

good example is arrest for drug offense. We know that policing patterns make it such that Blacks are 

much more likely to be arrested for drug offenses than whites, even though there isn’t much difference at 

the behavioral level and in terms of rates of drug use, etc.’” See also Peter Walker, Black People Twice 

as Likely to Be Charged with Drug Possession – Report, THE GUARDIAN (Aug. 21, 2013), 

https://www.theguardian.com/world/2013/aug/21/ethnic-minorities-likely-charged-drug-possession 

[https://perma.cc/FHJ8-HYXZ ]; PARTNERSHIP ON AI, supra note 137, at 16, n.15 (“Statistical validation 

of recidivism in particular suffers from a fundamental problem: the ground truth of whether an individual 

committed a crime is generally unavailable, and can only be estimated via imperfect proxies such as crime 

reports or arrests. . . . One problem with using such imperfect proxies is that different demographic groups 

are stopped, searched, arrested, charged, and are wrongfully convicted at very different rates in the current 

US criminal justice system.” (citations omitted)). 
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biased outcomes. Another example would be an AI tool that uses health-care 

costs as a measure of health-care needs. It is well known that minority 

communities have less access to health care and pay less into the health-care 

system, thus their needs may be improperly reflected when the algorithm 

considers health-care costs as a measure of health-care needs. In these 

examples, what we observe, and measure does not line up with what we 

actually care about. 

Finally, bias in data also can obviously occur because the data reflects 

the systematic race and gender discrimination that exists in society. This can 

be seen with tools that assess resumes for interviews,159 or applications for 

Apple credit cards.160 

While the line between the data and the model that is derived from it 

can be fuzzy, bias can also come into play with respect to the algorithm itself. 

Most machine-learning algorithms are premised on “bias” in the sense that 

their entire purpose is to discriminate between X and Y, because that is what 

helps the tool to make predictions. The choice of tool itself imposes 

assumptions on the data, and norms and values are built into the models the 

tools generate. AI developers make certain decisions about problem 

specification, what the system is trying to model or predict and how best to 

do so, including methods for data cleansing and processing, the features the 

system will consider, the weights the system will assign to those features, 

how data (particularly outliers) are to be treated, outcome variables, and so 

on, often without much consideration of the potential harms or unintended 

consequences that can flow from these hidden choices. For example, if an AI 

system is trying to predict the quality of employees, and it takes the number 

of promotions, raises, and highest-attained salary into account, the output 

will necessarily be biased because those features typically are not evenly 

distributed across race and gender. Another example might be an algorithm 

designed to determine where street repairs are needed based on reports of 

potholes reported by phone or on a website. But if the algorithm does not 

take into account the fact that not all people in all neighborhoods have access 

to cell phones or computers, and undocumented residents may be unwilling 

to contact a public agency, such an algorithm would only serve to increase 

disparities in road conditions in poor versus wealthy neighborhoods. 

AI developers may not be the best qualified or the best equipped to 

make such algorithmic design choices in light of the fact that that they 

typically do not reflect the diversity of the populations to which the 

 

 159 See Dastin, supra note 103. 

 160 See Vigor, supra note 103. 
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algorithms will be applied,161 and have little to no training in ethics or the 

law, and therefore may be insensitive to the unintended consequences of their 

decisions. Lawyers, ethicists, policy makers, and regulators are brought into 

the process, if at all, long after these decisions have been made and when 

they are no longer transparent or easily altered. This oversight results in 

silent failures that often go undetected until they result in public relations 

nightmares. 

Most AI tools place a great emphasis on achieving predictive accuracy 

and efficiency, but do not always consider statistical or demographic 

parity,162 the distribution of false positives and false negatives,163 or other 

measures of fairness and bias. Even if society were able to come to consensus 

on a definition of “fairness” in AI,164 fairness would still be incredibly hard 

 

 161 See Sarah Myers West et al., Discriminating Systems: Gender, Race and Power, in AI, AI NOW 

INSTITUTE (Apr. 2019), https://ainowinstitute.org/discriminatingsystems.pdf [https://perma.cc/8AXB-

46RV]; see also Kari Paul, ‘Disastrous’ Lack of Diversity in AI Industry Perpetuates Bias, Study Finds, 

THE GUARDIAN (Apr. 17, 2019), https://www.theguardian.com/technology/2019/apr/16/artificial-

intelligence-lack-diversity-new-york-university-study [https://perma.cc/KB5C-MGKY]. 

 162 An unknown author once defined statistical parity as “the statistical equivalent of the legal 

doctrine of adverse impact. It measures the difference that the majority and protected classes get a 

particular outcome. When that difference is small, the classifier is said to have ‘statistical parity,’ i.e., to 

conform to this notion of fairness.” Cf. Gal Yona, A Gentle Introduction to the Discussion on Algorithmic 

Fairness, TOWARDS DATA SCI. (Oct. 5, 2017), https://towardsdatascience.com/a-gentle-introduction-to-

the-discussion-on-algorithmic-fairness-740bbb469b6 [https://perma.cc/AWT2-HMSH] (“US legal 

theory uses the ‘disparate impact theory’ principle: a practice is considered illegal discrimination if it has 

a ‘disproportionately adverse’ effect on members of a protected group . . . The mathematical equivalence 

of the disparate impact principle at its most extreme version (allowing no adverse effect on members of 

the protected group) for binary classification tasks is the Statistical Parity condition: it essentially 

equalizes the outcomes across the protected and non-protected groups.”). For more technical discussions 

of statistical or demographic parity, and fairness of algorithms, see Jeremy Kun, One Definition of 

Algorithmic Fairness: Statistical Parity, MATH ∩ PROGRAMMING (Oct. 19, 2015), 

https://jeremykun.com/2015/10/19/one-definition-of-algorithmic-fairness-statistical-parity 

[https://perma.cc/9Y9V-DVK6]; Simon Prince, Tutorial #1: Bias and Fairness in AI, BOREALIS AI (Aug. 

19, 2019), https://www.borealisai.com/en/blog/tutorial1-bias-and-fairness-ai [https://perma.cc/P8PV-

UFMR]. 

 163 See, e.g., PARTNERSHIP ON AI, supra note 137, at n.6 (“[E]valuation of machine learning models 

is a complicated and subtle topic which is the subject of active research. In particular, note that inaccuracy 

can and should be divided into errors of ‘Type I’ (false positive) and ‘Type II’ (false negative) – one of 

which may be more acceptable than the other, depending on the context.”). 

 164 See, e.g., Kenn So, A Primer on Fairness, TOWARDS DATA SCI., 

https://towardsdatascience.com/artificial-intelligence-fairness-and-tradeoffs-ce11ac284b63 

[https://perma.cc/VGN8-NUM6] (“There is no one definition of what is fair. What is considered fair 

depends on the context.”); Louise Mastakis, What Does a Fair Algorithm Actually Look Like?, WIRED, 

https://www.wired.com/story/what-does-a-fair-algorithm-look-like [https://perma.cc/G32Z-MGVT] 

(“The question of ‘[w]hat it means for an algorithm to be fair?’ does not have a technical answer alone. . . . 

It matters what social processes are in place around that algorithm.”); Jeremy Kun, What Does It Mean 

for an Algorithm to Be Fair?, MATH ∩ PROGRAMMING, https://jeremykun.com/2015/07/13/what-does-it-

mean-for-an-algorithm-to-be-fair [https://perma.cc/E2CK-9X6U] (“[T]here is no accepted definition of 

what it means for an algorithm to be fair.”) (emphasis in original); Alexandra Ebert, We Want Fair 

Algorithms – But How to Define Fairness? (Fairness Series Part 3), MOSTLY • AI, 
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to operationalize and highly context-dependent.165 Many commentators have 

noted that it may not be possible to achieve both good predictive accuracy 

and fairness at the same time,166 and lawyers and judges may be forced to 

decide which of these competing values is more important under any given 

set of circumstances. While many high-level aspirational principles and 

guidelines have been promulgated for trustworthy or ethical AI, and while 

they are admirable, many simply cannot be implemented in any practical 

way.167 And, it is questionable in the first place whether we want developers 

making “de-biasing” decisions in the dark. This leaves it up to lawyers and 

judges to make sure that the correct questions are being asked—for example, 

whether impact assessments have been performed, how the tool was assessed 

for bias and by whom, and whether the correct metrics were collected and 

reported. 

Finally, bias arises as a result of the human interpretation of the output 

of AI systems. All humans have unconscious or implicit biases,168 such as 

confirmation bias. Confirmation bias is the tendency for humans to search 

for, interpret, favor, and recall information that confirms their prior beliefs 

and values;169 It has a tendency to distort evidence-based decision-making. 

 

https://mostly.ai/2020/05/06/we-want-fair-ai-algorithms-but-how-to-define-fairness 

[https://perma.cc/4FCD-VNMV] (“Fairness is a vastly complex concept and as people tend to have 

different values their interpretations of fairness differ as well.”). 

 165 See So, supra note 164. 

 166 Indeed, the Practitioner’s Guide to COMPAS Core itself cites to a 2018 study that concluded 

from “a thorough examination of risk assessment fairness in criminal justice settings” that “[e]xcept in 

trivial cases, it is impossible to maximize accuracy and fairness at the same time and impossible 

simultaneously to satisfy all kinds of fairness.” Practitioner’s Guide to COMPAS Core, NORTHPOINTE 

INC. D/B/A EQUIVANT 1, 19 (2019), https://www.equivant.com/wp-content/uploads/Practitioners-Guide-

to-COMPAS-Core-040419.pdf [https://perma.cc/CMG4-R2QA] (quoting Richard Berk et al., Fairness 

in Criminal Justice Risk Assessments: The State of the Art, 50 SOC. METHODS & RES. 1, 1 (2018)); see 

also Katherine B. Forrest, When AI Tools Are Designed for Accuracy Over Fairness, N.Y. L.J., 

https://www.law.com/newyorklawjournal/2020/10/06/when-ai-tools-are-designed-for-accuracy-over-

fairness [https://perma.cc/K4KU-VSCL]. 

 167 For a global inventory of AI Ethics Guidelines, see AI Ethics Guidelines Global Inventory, 

ALGORITHM WATCH, https://inventory.algorithmwatch.org [https://perma.cc/6XEG-W3DX]. 

 168 See Karen Steinhauser, Everyone Is a Little Bit Biased, ABA, 

https://www.americanbar.org/groups/business_law/publications/blt/2020/04/everyone-is-biased 

[https://perma.cc/P5WR-2KF7]; Keith Payne et al., How to Think About ‘Implicit Bias,’ SCI. AM., 

https://www.scientificamerican.com/article/how-to-think-about-implicit-bias [https://perma.cc/Y8DH-

PQY8]; Perry Hinton, Implicit Stereotypes and the Predictive Brain: Cognition and Culture in ‘Biased’ 

Person Perception, 3 PALGRAVE COMM., Art. No. 17086 (2017); the interested reader can test their own 

implicit biases using the Harvard Implicit Association (“HIA”) Test. See Project Implicit, HARVARD, 

https://implicit.harvard.edu/implicit [https://perma.cc/LZ7S-RNX7]. 

 169 See Confirmation Bias, WIKIPEDIA,  

https://en.wikipedia.org/w/index.php?title=Confirmation_bias&oldid=1001137946 

[https://perma.cc/2MRU-Z77M]; Bettina J. Casad, Confirmation Bias, BRITANNICA, 

https://www.britannica.com/science/confirmation-bias [https://perma.cc/M5T8-BVZJ]. 
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There are other biases that are more specific to algorithms and their outputs. 

Berkeley J. Dietvorst and his colleagues at the University of Pennsylvania 

wrote a seminal paper on algorithm aversion showing that, even though in 

many circumstances automated decision-making systems can more 

accurately predict the future than human forecasters,170 when forecasters are 

given the choice of whether to use a human prediction or an algorithmic one, 

they tend to favor the former even when they have observed the algorithmic 

predictor repeatedly outperform the human forecaster.171 Dietvorst et al. posit 

that this is because people more quickly lose confidence in algorithms than 

in humans when they make the same mistakes, holding the algorithms to a 

higher standard.172 This phenomenon can be observed, for example, with 

autonomous vehicles. Even though evidence shows that these vehicles are 

likely to reduce car accidents by 94%, people continue to fear them because 

what they remember is Google’s relatively limited number of accidents.173 

On the other side of the coin is the problem of automation bias, the 

tendency for humans to favor results from automated decision-making 

systems and to ignore or discount contradictory evidence generated 

separately from such systems, even if it is correct, because they believe that 

the automated decision-making system is somehow more “trustworthy” or 

“objective.”174 A classic example of this is the case of three foreign tourists 

vacationing in Australia who followed the instructions of their GPS system 

and drove straight into Moreton Bay so far that they were forced to abandon 

their vehicle in the water.175 We see both of these tendencies at work with the 

 

 170 See Dietvorst et al., supra note 19, at 123 

 171 See id. 

 172 See id. 

 173 See Teena Maddox, How Autonomous Vehicles Could Save Over 350k Lives in the US and 

Millions Worldwide, ZDNET, https://www.zdnet.com/article/how-autonomous-vehicles-could-save-

over-350k-lives-in-the-us-and-millions-worldwide [https://perma.cc/9JLA-EMBX] (“[Department of 

Transportation (“DOT”)] researchers estimate that fully autonomous vehicles, also known as self-driving 

cars, could reduce fatalities by up to 94% by eliminating those accidents that are due to human error.”). 

But see Matthew Hutson, People Don’t Trust Driverless Cars. Researchers Are Trying To Change That, 

SCI., https://www.sciencemag.org/news/2017/12/people-don-t-trust-driverless-cars-researchers-are-

trying-change [https://perma.cc/YQ6Y-ML3U] (“Unnerved by the idea of not being in control—and by 

news of semi-AVs that have crashed, in one case killing the owner—many consumers are 

apprehensive.”). 

 174 See Automation Bias, WIKIPEDIA,  

https://en.wikipedia.org/w/index.php?title=Automation_bias&oldid=1001875428 

[https://perma.cc/UAE5-EYCK]; Mary L. Cummings, Automation Bias in Intelligent Time Critical 

Decision-Making Support Systems, PROC. AM. INST. OF AERONAUTICS & ASTRONAUTICS (“AIAA”) 1ST 

INTELLIGENT SYS. TECH. CONF. (2014). 

 175 See Hillary Hanson, GPS Leads Japanese Tourists to Drive into Australian Bay, HUFFPOST US, 

https://www.huffpost.com/entry/gps-tourists-australia_n_1363823 [https://perma.cc/D575-HG68]. See 

also What Is Automation Bias and How Can You Prevent It, PA CONSULTING, 

https://www.paconsulting.com/insights/what-is-automation-bias-how-to-prevent 
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use of RNA tools: States and judges both under- and over-rely on them.176 

They ignore RNAs in determining treatments for offenders—the very 

purpose for which they were designed—and rely on them for sentencing—a 

use for which their own developer expressed concerns.177 

B.    Lack of Robust Testing for Validity and Reliability 

A second serious concern with algorithms and their outputs is the lack 

of proper evaluation of many AI systems commonly used today. Unlike 

drugs, which must undergo a rigorous testing and approval process under the 

auspices of the U.S. Food and Drug Administration (“FDA”), algorithms—

even those that can have a significant impact on legal and human rights—do 

not need to undergo any evaluation at all prior to the time that their output is 

offered into evidence in a civil or criminal trial. And even when testing is 

performed, it is rarely independent, peer-reviewed, or sufficiently 

transparent to be properly assessed by those competent to do so. There are 

no standards for the conduct of AI product testing and many tools that are in 

use today would not pass muster if they were subjected to the scientific 

method. 

Validity is the quality of being correct or true, in other words, whether 

and how accurately an AI system measures (i.e., classifies or predicts) what 

it is intended to measure.178 Reliability refers to the consistency of the output 

of an AI system; that is, whether the same (or a highly correlated) result is 

obtained under the same set of circumstances.179 Both need to be measured 

and both need to exist for an AI system to be trustworthy. As mentioned with 

respect to COMPAS, focus on overall “accuracy,”180 at the expense of 

 

[https://perma.cc/S5Z7-3CLX] (“This sort of thing happens so often in Death Valley, California, that the 

local rangers have coined the term ‘death by GPS.’”). 

 176 See Rhys Dipshan, Judges May Be Using Risk Assessments Too Much—and Too Little, 

LEGALTECH NEWS, https://www.law.com/legaltechnews/2020/07/16/judges-may-be-using-risk-

assessments-too-much-and-too-little [https://perma.cc/CUT7-HMTF]. 

 177 See id.; See also Angwin et al, supra note 134 (“I didn’t design this software to be used in 

sentencing. . . . But as time went on, I started realizing that so many decisions are made, you know, in the 

courts. So I gradually softened on whether this could be used in the courts or not.”). 

 178 See Roberta Heale & Alison Twycross, Validity and Reliability in Quantitative Studies, 18 EVID.-

BASED NURS. 66 (July 15, 2015). 

 179 See id. 

 180 According to Pro Publica’s analysis, COMPAS’ predictive validity is at best moderate. The score 

has proved remarkably unreliable in forecasting violent crime: Only 20% of the people predicted to 

commit violent crimes in next two years went on to do so. When a full range of crimes were considered—

including misdemeanors and driving with an expired license—of those deemed likely to re-offend, only 

61% were arrested for a subsequent crime within the next two years. See Angwin et al., supra note 134. 

There are others, however, who have criticized Pro Publica’s findings. See, e.g., Flores et al., supra note 

143 
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measures that illuminate false-positive and false-negative errors,181 and other 

metrics, can mislead users about the quality of the classifications or 

predictions made by an AI system.182 As of 2016, when the Pro Publica piece 

was written, even though COMPAS was being used in connection with 

sentencing, it had never been tested by the U.S. Sentencing Commission.183 

While the tool was developed using a nation-wide training sample, it was not 

always tested using a sample of local offenders before it was applied such 

that there was a reason to believe that the training set was reflective of the 

population on which the algorithm would be used.184 Since the publication of 

 

 181 “A false positive is an error in binary classification in which a test result incorrectly indicates the 

presence of a condition such as a disease when the disease is not present, while a false negative is the 

opposite error where the test result incorrectly fails to indicate the presence of a condition when it is 

present. These are the two kinds of errors in a binary test, in contrast to the two kinds of correct result (a 

true positive and a true negative).” False Positives and False Negatives, WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=False_positives_and_false_negatives&oldid=1001661831 

[https://perma.cc/J2F3-AQT9]. In statistical hypothesis testing, these are typically referred to as “Type I” 

and “Type II” errors, respectively. See id.; See also supra note 162. 

 182 See Jason Brownlee, Classification Accuracy Is Not Enough: More Performance Measures You 

Can Use, MACHINE LEARNING MASTERY (Mar. 21, 2014), 

https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-

measures-you-can-use [https://perma.cc/GM8H-BER5]. This problem is sometimes referred to as the 

“accuracy paradox.” See Accuracy Paradox, WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=Accuracy_paradox&oldid=979551882 

[https://perma.cc/Q7XA-XGJB] (“The accuracy paradox is the paradoxical finding that accuracy is not a 

good metric for predictive models when classifying in predictive analytics. This is because a simple model 

may have a high level of accuracy but be too crude to be useful. For example, if the incidence of category 

A is dominant, being found in 99% of cases, then predicting that every case is category A will have an 

accuracy of 99%. Precision [i.e., the proportion of cases predicted to be in category A that are actually in 

category A] and recall [i.e., the proportion of actual cases in category A that are correctly predicted to be 

in category A] are better measures in such cases. The underlying issue is that there is a class imbalance 

between the positive class and the negative class,” which causes accuracy to be a misleading measure) 

(emphasis in original). For definitions of “precision” and “recall” in the context of information retrieval, 

see Maura R. Grossman & Gordon V. Cormack, The Grossman-Cormack Glossary of Technology-

Assisted Review, 7 FED. CTS. L. REV. 1, 25, 27 (2013) (Precision is “[t]he fraction of Documents identified 

as Relevant by a search or review effort, that are in fact Relevant;” Recall is “[t]he Fraction of Relevant 

Documents that are identified as Relevant by a search or review effort.”). See also Precision and Recall, 

WIKIPEDIA, https://en.wikipedia.org/w/index.php?title=Precision_and_recall&oldid=1001750137 

[https://perma.cc/R59H-DTYB]. With respect to COMPAS specifically, Dr. Jennifer Skeem, Professor 

of Public Policy at the University of California at Berkeley notes “If you try to equalize false positive 

rates [between Black and White people], you may find that your calibration suffers, you’re going to 

misclassify people in terms of their likelihood of reoffending. But if you have really good calibration, 

you’re going to have unbalanced error rates, and that’s really the conundrum.” See Rhys Dipshan & 

Victoria Hudgens, Risk Assessment Tools Aren’t Immune from Systematic Bias. So Why Use Them?, 

LEGALTECH NEWS (July 17, 2021), https://www.law.com/legaltechnews/2020/07/17/risk-assessment-

tools-arent-immune-from-systemic-bias-so-why-use-them [https://perma.cc/BKK4-64QT]. 

 183 See Angwin et al., supra note 134. 

 184 See Wisconsin v. Loomis, 371 Wis. 2d 235 (2016), cert. denied, 137 S. Ct. 2290 (2017) ¶ 27 

(citing to expert testimony opining that “The Court does not know how the COMPAS compares that 

individual’s history with the population that it’s comparing them with. The Court doesn’t even know 

whether that population is a Wisconsin population, a New York population, a California population. . . 
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the Pro Publica article, there has been greater testing and evaluation of 

RNAs, but some still question whether there has been enough, and whether 

they should ever have been deployed without stringent prior validation.185 

 

.”). See also Rhys Dipshan, Same Score, Different Impact: States Can Decide Who Assessment Tech 

Deems ‘High Risk,’ LEGALTECH NEWS (July 15, 2020), 

https://www.law.com/legaltechnews/2020/07/15/same-score-different-impact-states-can-decide-whom-

assessment-tech-deems-high-risk [https://perma.cc/3CBT-D9WY] (“Decisions about risk thresholds . . . 

have to be made for each criminal justice population. After all, risk scores and their related failure rates 

are specific to particular populations, not just within a jurisdiction, but within different parts of the 

criminal justice system as well. . . . Risk factors are changed to ensure a tool accounts for a locality’s 

specific characteristics.”); Rhys Dipshan et al., States vs. Vendors: Are Some Risk Assessment Tools 

Better Than Others?, LEGALTECH NEWS (July 14, 2020), 

https://www.law.com/legaltechnews/2020/07/14/states-vs-vendors-are-some-risk-assessment-tools-

better-than-others [https://perma.cc/J43F-E4AM] ( “some states and jurisdictions choose to build their 

own tool[s] . . . because of the notion that developing and validating an instrument for their specific 

population will be more accurate than validating one originally built for another population. . . . ‘You get 

better results if you develop your instrument and test it on your own population.’”); PARTNERSHIP ON AI, 

supra note 137 (“[V]alidating a tool in one context says little about whether that tool is valid in another 

context. . . . [A] risk assessment might predict future arrests quite well . . . in one jurisdiction, but not 

another.”; “Given that validity often depends on local context to ensure a tool’s utility, where possible, 

the data . . . should be collected on a jurisdiction-by-jurisdiction basis in order to capture significant 

differences in geography, transportation, and local procedure[s]. . . .”). 

 185 See Alex Chohlas-Wood, Understanding Risk Assessment Instruments in Criminal Justice, 

BROOKINGS INST. (June 19, 2020), https://www.brookings.edu/research/understanding-risk-assessment-

instruments-in-criminal-justice [https://perma.cc/XBE6-2QG7] (“Though many studies have simulated 

the impact of RAIs [risk assessment instruments], research on their real-world use is limited.”; “Finally—

and perhaps most important—algorithms should be evaluated as they are implemented. It is possible that 

participants in any complicated system will react in unexpected ways to a new policy (e.g., by selectively 

using RAI predictions to penalize communities of color). Given this risk, policymakers should carefully 

monitor behavior and outcomes as each new algorithm is introduced and should continue routine 

monitoring once a program is established to understand longer-term effects. These studies will ultimately 

be key in assessing whether algorithmic innovations generate the impacts they aspire to achieve.”); 

PARTNERSHIP ON AI, supra note 137, at 3, 11, 15, 33 (“[The Partnership] has outlined ten largely 

unfulfilled requirements that jurisdictions should weigh heavily and address before further use of risk 

assessment tools in the criminal justice system. . . . Challenges in using these tools [include] . . . 

[c]oncerns about the validity, accuracy, and bias in the tools themselves. . . .”; “An overwhelming 

majority of the Partnership’s consulted experts agreed that current risk assessment tools are not ready for 

use in helping to make decisions to detain criminal defendants without the use of an individualized 

hearing.”; “In combination with concerns about accuracy and validity, [challenges with bias] present 

significant concern for the use of risk assessment tools in criminal justice domains.”; “One approach is 

for jurisdictions to cease using the tools in decisions to detain individuals until they can be shown to have 

overcome the numerous validity, bias, transparency, procedural, and governance problems that currently 

beset them.”); Alexander Babuta & Marion Oswald, Data Analytics and Algorithmic Bias in Policing 1, 

7 (RUSI 2019) (“Independent, methodologically robust evaluation of trials is essential to demonstrate the 

accuracy and effectiveness of a particular tool or method. If such evaluation does not demonstrate the 

tool’s effectiveness and proportionality, continued use would raise significant legal concerns regarding 

whether use of the tool was justified to fulfil a particular policing function, requiring the police force to 

review its design and operational use.”). Babuta and Oswald’s report focuses on both predictive crime 

mapping, as well as risk assessment, both of which are referred to as forms of “predicting policing.” Id. 

at 4. See also Dipshan, supra note 184 (“[V]alidations don’t always happen as expected. Some 

jurisdictions that lack criminal justice outcome data, for instance, will implement a third-party tool 

without first testing it on their own population. . . . States will also differ in how often they revalidate 
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While the issue of evaluation is addressed in more detail in section VIII 

below, discussing the factors that ought to be considered by lawyers and 

judges when the results of an AI analysis is being offered into evidence in a 

civil or criminal trial, it is imperative that both groups understand the 

scientific method and statistical measurement so they can properly assess the 

validity, reliability, and error rates of AI systems. Often, they lack the 

training to do so. 

C.    Failure to Monitor for Function Creep 

Closely related to the problem of inadequate testing and evaluation is 

the problem of function creep, which refers to the gradual widening of the 

use of a technology or system beyond the use for which it was originally 

intended, often, but not always, without validation and/or leading to an 

invasion of privacy.186 COMPAS, again, provides a good example of this. As 

explained above, COMPAS was originally designed for assessing the 

 

tools to confirm the instruments still work as intended, a necessity given demographic changes and new 

research findings. While some revalidations are required every few years by law in some states, in others, 

their timing can depend as much on available resources as need.”); Stephanie LaCambra et al., Recidivism 

Risk Assessments Won’t Fix the Criminal Justice System, ELECTRONIC FRONTIER FOUND., (Dec. 21, 

2018), https://www.eff.org/deeplinks/2018/12/recidivism-risk-assessments-wont-fix-criminal-justice-

system [https://perma.cc/Y2FC-KTNL] (“Risk assessment tools are often built using incomplete or 

inaccurate data because the representative dataset needed to correctly predict recidivism simply doesn’t 

exist. There is no reason to believe that the crime data we do have is sufficiently accurate to make reliable 

predictions.”; “Risk assessment tools must be evaluated by independent scientific researchers—not the 

DOJ itself or a private vendor. To the extent Congress intends the law to reduce disparate impacts on 

protected classes, independent research must verify that the system can accomplish that and not make the 

problem worse. Those evaluations should be made public.”) (emphasis in original); Thomas Douglas et 

al., Risk assessment Tools in Criminal Justice and Forensic Psychiatry: The Need for Better Data, 42 

EUR. PSYCHIATRY 134, 134 (May 2017) (“Violence risk assessment tools are increasingly used within 

criminal justice and forensic psychiatry, however there is little relevant, reliable and unbiased data 

regarding their predictive accuracy.”). The Law Commission of Ontario (“LCO”) recently raised the 

question of whether Canada should impose “a moratorium on algorithmic risk assessments or similar 

tools in the Canadian criminal justice system,” noting that “Many advocates in the United States would 

answer . . . affirmatively. This belief is based on the many significant and legitimate criticisms of these 

systems as presently deployed.” See LCO, The Rise and Fall of AI and Algorithms in American Criminal 

Justice: LESSONS FOR CANADA 1, 41 (2020). For a recent paper discussing three guiding principles—

auditability, transparency, and consistency—that should govern the use of RNA tools to help ensure due 

process for defendants, see John Villasenor & Virginia Foggo, Artificial Intelligence, Due Process, and 

Criminal Sentencing, 2020 MICH. ST. L. REV. 295 (2020). 

 186 See Function Creep, DICTIONARY.COM, https://www.dictionary.com/browse/function-creep 

[https://perma.cc/5W77-9W5S]. See also Function Creep: The Frankenstein of Privacy, VICTORIA 

MCINTOSH (Oct. 1, 2018), https://victoriamcintosh.com/function-creep-the-frankenstein-of-privacy 

[https://perma.cc/KE63-AYJE]. Oddly, while the term is used in hundreds of articles every year, the 

phenomenon is largely unresearched and there are few, if any, papers written on the phenomenon itself. 

Bert-Jaap Koops, The Concept of Function Creep, 13 LAW, INNOVATION, & TECH. 29, 30 (2021). “What 

distinguishes function-creep from . . . innovat[ion] . . . [is that it] denotes some qualitative change [in 

functionality] . . . that causes concern not only . . . because of the change itself, but also because the 

change is insufficiently acknowledged as transformative and in need of discussion.” Id. at 53–55. 
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treatment needs of offenders, but its use morphed from that to pre-trial 

release and bail decisions, and from there to sentencing, despite its lack of 

validation for the additional purposes.187 

Another concern relates to full-body security scanners used at airports 

and court houses. While the U.S. Transportation Security Administration 

(“TSA”) claims that its equipment is configured so that images cannot be 

recorded, it nonetheless requires that all airport body scanners that it 

purchases have a hard drive and Internet connectivity so that they are able to 

store and transmit images for the purposes of “testing, training, and 

evaluation.”188 In 2010, the U.S. Marshals Service acknowledged that it 

surreptitiously recorded tens of thousands of images at a single Florida 

checkpoint and that the machine it used could even be operated remotely.189 

The purposes for which this data was collected remains unclear. 

A recent example of function creep that implicates AI is Services 

Australia’s use of the country’s national facial biometrics database—

developed for a different purpose—to confirm the identities of people who 

had their self-identifying documents (“IDs”) destroyed as a result of 

catastrophic summer bushfires and were in need of disaster relief because of 

displacement.190 While arguably a laudable application, and while the 

individuals involved were asked to provide their consent to the process, the 

Department of Home Affairs provided little detail about how the service was 

deployed and how it might be used in the future.191 Apparently, in this case, 

a webcam setup was used to capture the facial images of those who lost their 

 

 187 “Most modern risk tools were originally designed to provide judges with insight into the types of 

treatment that an individual might need—from drug treatment to mental health counseling.” Angwin et 

al., supra note 134. COMPAS’s developer himself “testified that he didn’t design his software to be used 

in sentencing. ‘I wanted to stay away from the courts . . . [b]ut as time went on I started realizing that so 

many decisions are made, you know, in the courts. So, I gradually softened on whether this could be used 

in the courts or not’. . . . Still, . . . ‘I don’t like the idea myself of COMPAS being the sole evidence that 

a decision would be based upon.’” Id.; See also PARTNERSHIP ON AI, supra note 137, at 22 note 42 

(“Notably, part of the holding in Loomis, mandated a disclosure in any Presentence Investigation Report 

that COMPAS risk assessment information ‘was not developed for use at sentencing, but was intended 

for use by the Department of Corrections in making determinations regarding treatment, supervision, and 

parole.’”). 

 188 Declan McCullagh, Feds Found Storing Checkpoint Body Image Scan Images, CBS NEWS (Aug. 

4, 2010, 10:35 AM), https://www.cbsnews.com/news/feds-found-storing-checkpoint-body-scan-images 

[https://perma.cc/5HM7-UANJ]. 

 189 See id. 

 190 See Justin Hendry, Services Australia Put Face Matching to Work for Bushfire Relief Payments, 

ITNEWS (June 5, 2020, 11:50 AM), https://www.itnews.com.au/news/services-australia-put-face-

matching-to-work-for-bushfire-relief-payments-548978 [https://perma.cc/96T4-VFMP]; see also Marie 

Johnson, Face Recognition, Function Creep and Democracy, INNOVATIONAUS (June 9, 2020), 

https://www.innovationaus.com/face-recognition-function-creep-and-democracy 

[https://perma.cc/MMS8-UWFR]. 

 191 See Hendry, supra note 190. 



19:1 (2021) AI as Evidence 

53 

IDs and sought disaster relief, and those photos were then matched to photos 

from passports, visas, and driver’s licenses.192 Even when the repurposing 

appears to be benign, lawyers and judges need to ensure that AI tools are 

being used for their intended purpose and that any expansion in their use is 

lawful and supported by empirical evidence. 

As seen from the examples above, function creep can easily bleed into 

invasions of privacy, our next topic. 

D.    Failure to Ensure Data Privacy and Data Protection 

It has been said that data is the new oil.193 Supervised machine-learning 

algorithms, particularly those that employ deep learning, require massive 

amounts of labeled data to function. Where does this data come from? 

Sources include Internet searches and clicks, buying habits, and lifestyle and 

behavioral data gathered from public records, social network usage, mobile 

phones, video surveillance systems, sensors, and, more recently, the Internet 

of Things (“IoT”). Organizations analyze this information to classify 

individuals into different groups, often by using algorithms to identify 

correlations between different characteristics or behaviors taken from 

different data sets to create profiles about individuals. But, as most of us 

learned in grade school, “correlation does not imply causation.”194 That adage 

is often forgotten when it comes to AI applications. 

“Big data” refers to the ways that organizations, including both private 

business and government, combine diverse datasets and then use statistics 

and other data-mining techniques to extract otherwise hidden information. 

 

 192 Id. 

 193 See, e.g., The World’s Most Valuable Resource Is No Longer Oil, But Data, THE ECONOMIST 

(May 6, 2017), https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-

no-longer-oil-but-data [https://perma.cc/2K64-CK7T]; see also Mitt Rosebrough, Is Data Really ‘The 

New Oil’?, KENWAY CONSULTING (Apr. 27, 2020), https://www.kenwayconsulting.com/blog/data-is-

the-new-oil [https://perma.cc/3DUR-QWKK]; see also Kiran Bhageshpur, Data Is The New Oil - - And 

That’s A Good Thing, FORBES (Nov. 15, 2019, 8:15 AM), 

https://www.forbes.com/sites/forbestechcouncil/2019/11/15/data-is-the-new-oil-and-thats-a-good-

thing/?sh=3a287d6c7304 [https://perma.cc/HKK9-XMJ5]; Joris Toonders, Data Is the New Oil of the 

Digital Economy, WIRED (July 2014), https://www.wired.com/insights/2014/07/data-new-oil-digital-

economy [https://perma.cc/AN44-ZKZB]. 

 194 See, e.g., Seema Singh, Why Correlation Does Not Imply Causation?, TOWARDS DATA SCI. (Aug. 

24, 2018), https://towardsdatascience.com/why-correlation-does-not-imply-causation-5b99790df07e 

[https://perma.cc/HZ8W-M9HQ]; Nathan Green, Correlation Is Not Causation, THE GUARDIAN (Jan. 6, 

2012), https://www.theguardian.com/science/blog/2012/jan/06/correlation-causation 

[https://perma.cc/7MP5-H4ZZ]; Correlation Does Not Imply Causation, WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=Correlation_does_not_imply_causation&oldid=1001822743 

[https://perma.cc/5HH6-35PY]. At least one commentator believes that correlation is really all that 

matters in the age of big data. See Anderson, supra note 93 (“Petabytes allow us to say: ‘Correlation is 

enough.’”; “Correlation supersedes causation, and science can advance even without coherent models, 

unified theories, or really any mechanistic explanation at all.”). 
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These approaches raise serious privacy and fairness concerns. The profiles 

that result from these methods are then used to discover information about 

an individual’s characteristics or preferences, to predict their future behavior, 

and/or to make decisions about them, often without appropriate disclosure. 

A good example of the danger of these systems is the Chinese Communist 

Party’s (and similar private Chinese organizations’) use of social credit 

scores for judging citizens’ trustworthiness.195 The data used by such rating 

systems can include anything from not paying a loan or a fine on time, to 

spending “frivolously,” to misbehaving on a train by playing music too loud, 

to lighting up in a smoke-free zone, to walking a dog off-leash, to standing 

up a taxi, to driving through a red light, to spreading “fake news,” to losing 

a defamation case against someone, to spending too much time playing video 

games.196 One city, Rongcheng, gives all of its residents 1,000 points to start 

and deducts from these for “bad” behavior, such as traffic violations or 

stealing electricity, or adds points for “good behavior,” such as donating to 

charity.197 Even dating sites like Baihe allow potential partners to not only 

assess each other’s looks, but also their social credit scores.198 The 

consequences of low scores can be more serious than simply losing a date; 

they include the loss of educational and employment opportunities, as well 

as transportation restrictions (e.g., the inability to purchase business class 

train tickets or to lodge at certain hotels).199 Those with high scores get perks 

such as discounts on utility bills, the ability to book hotel rooms without 

deposits, and faster application processing to travel abroad.200 There is little, 

if any, opportunity to challenge one’s score. 

Corporations in the United States are increasingly using AI to divide 

consumers along class lines. In fact, financial services institutions have used 

 

 195 See Amanda Lee, What Is China’s Social Credit System and Why Is It Controversial?, SOUTH 

CHINA MORNING POST (Aug. 9, 2020, 12:00 PM), https://www.scmp.com/economy/china-

economy/article/3096090/what-chinas-social-credit-system-and-why-it-controversial 

[https://perma.cc/4AF5-MLMW]; Nicole Kobie, The Complicated Truth about China’s Social Credit 

System, WIRED (July 6, 2019, 12:00 PM), https://www.wired.co.uk/article/china-social-credit-system-

explained [https://perma.cc/7NAX-Q9SF]. 

 196 Nadre Nittle, Spend ‘Frivolously’ and Be Penalized under China’s New Social Credit System, 

VOX (Nov. 2, 2018, 6:50 PM), https://www.vox.com/the-goods/2018/11/2/18057450/china-social-credit-

score-spend-frivolously-video-games [https://perma.cc/B9AW-P48C]. 

 197 See Kobie, supra note 195. 

 198 See id.; see also Celia Hatton, China ‘Social Credit’: Beijing Sets Up Huge System, BBC NEWS 

(Oct. 26, 2015), https://www.bbc.com/news/world-asia-china-34592186 [https://perma.cc/R5UN-2LLE] 

(“China’s biggest matchmaking service, Baihe, has teamed up with Sesame [Credit, the financial wing of 

Alibaba] to promote clients with good credit scores, giving them prominent spots on the company’s 

website. ‘A person’s appearance is very important,’ explains Baihe’s vice-president Zhuan Yirong. ‘But 

it’s more important to be able to make a living. Your partner’s fortune guarantees a comfortable life.’”). 

 199 See Kobie, supra note 195; Nittle, supra note 196. 

 200 See Nittle, supra note 196. 
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algorithms for these purposes for decades. The idea that a person’s financial 

(i.e., debt and credit) history and other characteristics reflect trustworthiness 

and reliability has long influenced employment and other decisions and can 

increasingly be expected to do so as AI continues to proliferate. 

The collection of consumer data is often accomplished without 

meaningful informed consent. In circumstances where consent has been 

given, the subsequent sale of data to others may be inconsistent with 

reasonable expectations about its use, especially when it is being repurposed 

in unexpected ways to draw conclusions about individuals, with potentially 

harmful effects. Fairness dictates transparency in how data will be collected 

and used, and by whom; how long it will be retained; and the potential 

negative impact of the intended use of the data on the individual. Concerns 

about these issues have severely impeded the acceptance of contact tracing 

applications developed for COVID-19.201 

Along with the collection of vast amounts of data for AI algorithms 

come the increasing risks of privacy violations and data breach. There is a 

tension between more accurate predictions based on larger, more 

representative data sets, and encroachment on privacy. Many commentators 

have scoffed that privacy is a dead letter.202 They may be right. An early 

example of the illusion of anonymity occurred in 2006 when AOL released 

a large amount of data to the public showing user search requests. It turned 

out that some users could be identified by name based on their search 

queries.203 This was followed by a scandal in 2008, in which two computer 

 

 201 See Kayla Hui, Privacy Concerns Continue to Prevent Contract Tracing App Use, 

VERYWELLHEALTH (Nov. 28, 2020), https://www.verywellhealth.com/family-tension-privacy-contact-

tracing-app-covid-19-5088798 [https://perma.cc/6ZB6-4WCS]; Alejandro De La Garza, Contract 

Tracing Apps Were Big Tech’s Best Idea for Fighting COVID-19. Why Haven’t They Helped?, TIME 

MAG. (Nov. 10, 2020, 7:00 AM), https://time.com/5905772/covid-19-contact-tracing-apps 

[https://perma.cc/2QP9-PY5T]; Sarah Kreps et al., Contract-tracing Apps Face Serious Adoption 

Obstacles, BROOKINGS INST. TECHSTREAM (May 20, 2020), 

https://www.brookings.edu/techstream/contact-tracing-apps-face-serious-adoption-obstacles 

[https://perma.cc/QQB4-VZ6H]. 

 202 Sun Microsystems’ CEO is claimed to have said in an interview with reporters and industry 

analysts “You have zero privacy anyway. Get over it!” Polly Sprenger, Sun on Privacy: ‘Get over it,’ 

WIRED (Jan. 26, 1999, 12:00 AM), https://www.wired.com/1999/01/sun-on-privacy-get-over-it 

[https://perma.cc/K3SZ-PTKY]. See also, e.g., Summer Lewis, Is Privacy a Dead Letter?, IP OSGOODE 

(Oct. 30, 2019), https://www.iposgoode.ca/2019/10/is-privacy-a-dead-letter [https://perma.cc/9TPC-

BEGX]; Henry Mance, Is Privacy Dead?, FIN. TIMES (July 19, 2019), 

https://www.ft.com/content/c4288d72-a7d0-11e9-984c-fac8325aaa04 [https://perma.cc/F32L-QBN3]; 

Judith Rauhofer, Privacy Is Dead, Get Over It! Information Privacy and the Dream of Risk-Free Society, 

17 INFO. & COMM. TECH. L. 185 (2008). 

 203 See AOL Search Data Leak, WIKIPEDIA,  

https://en.wikipedia.org/w/index.php?title=AOL_search_data_leak&oldid=970872440 

[https://perma.cc/RR8X-MVPB]. See also Michael Barbaro & Tom Zeller Jr., A Face Is Exposed for AOL 
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scientists were able to re-identify Netflix users in a database of customer 

records that Netflix had made available to researchers in a competition 

intended to improve the company’s recommender system,204 and another in 

2013, by a study in which a computer scientist at Harvard was able to re-

identify patients by name in a supposedly anonymized data set made publicly 

available by Washington State.205 In a 2015 study entitled Unique in the 

Shopping Mall: On the Reidentifiability of Credit Card Metadata, 

researchers analyzed credit card transactions made by 1.1 million people in 

10,000 stores over a three-month period.206 The data contained basic 

information about the date of each transaction, the amount charged, and the 

name of the store.207 Although the data had been anonymized by removing 

personal information such as names and account numbers, the uniqueness of 

people’s behavior made it easy to single them out.208 It turned out that by 

knowing just four pieces of information, the researchers were able to re-

identify 90 % of the shoppers as unique individuals, and to uncover their 

records.209 By combining their “unicity” with publicly available information, 

such as posts on social media, it was possible to re-identify many of the 

individuals by name.210 Since then, a reporter at Gawker was able to re-

identify celebrities by name in an anonymized database of taxi records made 

public by New York City’s taxi and Limousine Commission.211 These 

examples call into question the standard approaches many companies, 

hospitals, government agencies, and other organizations use to anonymize 

 

Searcher No. 4417749, N.Y. TIMES (Aug. 9, 2006), 

https://www.nytimes.com/2006/08/09/technology/09aol.html [https://perma.cc/X9TT-3LHT]. 

 204 Arvind Narayanan & Vitaly Shmatikov, Robust De-anonymization of Large Sparse Data Sets, 

PROC. OF THE IEEE SYMP. ON SECURITY AND PRIV. PROC. 111–25 (2008). 

 205 LATANYA SWEENEY, MATCHING KNOWN PATIENTS TO HEALTH RECORDS IN WASHINGTON 

STATE DATA (SSRN 2013), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2289850 

[https://perma.cc/T4D6-HWVS]. 
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BITS (Jan. 29, 2015, 2:01 PM), https://bits.blogs.nytimes.com/2015/01/29/with-a-few-bits-of-data-

researchers-identify-anonymous-people [https://perma.cc/3Q2Z-7EMJ]; Yves-Alexandre de Montjoye et 

al., Unique in the Shopping Mall: On the Reidentifiability of Credit Card Metadata, 347 SCI. 536 (2015). 

But see David Sánchez et al., Comment on “Unique in the Shopping Mall: On the Reidentifiability of 

Credit Card Metadata,” 351 SCI. 1274 (2016) (arguing that “anonymization can be performed by 

techniques well established in the literature”). 

 207 See Montjoye et al., supra note 206, at 537–38. 

 208 See id. at 538–39. 

 209 See Singer, supra note 206. 
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WEBSTER.COM DICTIONARY, https://www.merriam-webster.com/dictionary/unicity 
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sensitive information. This problem will only increase as AI gets better at 

crunching information from disparate data sources. 

There is presently very little law in the United States about how 

aggregated data and profiling may be used. This is not the case in the 

European Union (“EU”), where in 2018, the General Data Protection 

Regulation (“GDPR”) was enacted.212 The GDPR provides certain 

protections for the “processing” of personal data of data subjects in the EU.213 

While an extended discussion of the GDPR is beyond the scope of this paper, 

we will briefly mention a few protections that relate to “big data” and the use 

of AI. 

Article 7 of the GDPR address the provisions relating to consent, which 

must be voluntary, freely given, informed, and unambiguous,214 more so than 

those terms are typically understood in the United States. Consent must be 

obtained for the specific purpose for which the data will be used, so there 

cannot be undisclosed repurposing of the data.215 Relatedly, Article 5(1)(b), 

which addresses how personal data may be processed (i.e., used), requires 

that personal data must be “collected for specified, explicit and legitimate 

purposes and not further processed in a manner that is incompatible with 

those purposes.” 216 This is referred to as the “purpose limitation.”217 Article 

5(1)(c) further states that personal data must be “limited to what is necessary 

in relation to the purposes for which they are processed.”218 This is referred 

to as “data minimization.”219 

 

 212 The General Data Protection Regulation Applies in All Member States from 25 May 2018, EUR-

LEX (May 24, 2018), https://eur-lex.europa.eu/content/news/general-data-protection-regulation-GDPR-

applies-from-25-May-2018.html [https://perma.cc/L479-VS62]. Canada has recently proposed similar 

legislation. See News Release, Innovation, Sci. and Econ. Dev. Canada, New Proposed Law to Better 

Protect Canadians’ Privacy and Increase Their Control Over Their Data and Personal Information, 

CANADA.CA (Nov. 17, 2020), https://www.canada.ca/en/innovation-science-economic-

development/news/2020/11/new-proposed-law-to-better-protect-canadians-privacy-and-increase-their-

control-over-their-data-and-personal-information.html [https://perma.cc/RR8W-MDVD]. 

 213 See Regulation 2016/679 of the European Parliament and of the Council of 27 April 2016, art. 

2(1), 2016 O.J. (L 119) 1, 32 [hereinafter “GDPR”] (“This Regulation applies to the processing of 

personal data wholly or partly by automated means and to the processing other than by automated means 

of personal data which form part of a filing system or are intended to form part of a filing system.”). The 

GDPR defines “processing” as “any operation or set of operations which is performed on personal data 

or on sets of personal data, whether or not by automated means, such as collection, recording, 

organisation, structuring, storage, adaptation or alteration, retrieval, consultation, use, disclosure by 

transmission, dissemination or otherwise making available, alignment or combination, restriction, erasure 

or destruction.” Id. at art. 4(2). 

 214 See id. at art. 7; see also id. at 6 (Recital 32). 

 215 See id. at art. 7(2); see also id. at 6 (Recital 32). 

 216 Id. at art. 5(1)(b); see also id. at 7, 9–10 (Recitals 39 and 50). 

 217 See id. at art. 5(1)(b). 

 218 See id. at art. 5(1)(c); see also id. at 7 (Recital 39). 

 219 See id. at art. 5(1)(c). 
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The GDPR also provides for the “Right to Erasure” (a/k/a the “Right to 

be Forgotten”) and Article 7 requires that consent be revocable.220 Article 

17(1) provides the data subject with the right to demand the erasure of 

personal data about themselves without undue delay, and that the data 

controller must comply when the data subject withdraws their consent.221 

This may be virtually impossible to accomplish once that data has been 

ingested into a machine-learning algorithm. 

More important for present purposes is Article 22, which prohibits 

automated decision-making in certain circumstances.222 Article 22(1) 

provides that a data subject may not be subject to a decision made solely on 

the basis of automated processing, including profiling, if that decision 

produces legal or similar effects.223 Automated decision-making is the 

process of making a decision solely by automated means, without any human 

involvement.224 These decisions can be based on factual data (i.e., data 

provided by the data subject or observed about them) as well as digitally 

created profiles (i.e., derived or inferred data). Examples of automated 

decisions include an online decision to award credit or a loan, eligibility for 

social service benefits or the amount of same, recruiting decisions about 

whether to interview a candidate for a position based on an automated 

analysis of their résumé, or decisions about providing a medical treatment to 

patients based on predictions about the likelihood of success given the 

presence or absence of certain group characteristics. The GDPR restricts 

only certain, solely automated decisions: ones that either affect a person’s 

legal status or rights, or those that have a significant effect on an individual’s 

circumstances, reputation, behavior, or choices.225 The latter is not terribly 

well defined. The GDPR includes other collateral rights such as the right to 

request a review if an individual is unhappy with a solely automated 

decision.226 The decision maker must be able to show how and why it reached 

the decision it did, and the system should be able to provide an audit trail 

 

 220 Id. at art. 7(3), art. 17(1); see also id. at 12–13 (Recitals 65 and 66). 

 221 See id. at art. 17(1); see also id. at 12–13 (Recital 65). 

 222 See id. at art. 22; see also id. at 14 (Recital 71). 

 223 See id. at art. 22(1); see also id. at 14 (Recital 71). 

 224 Note that there is some variability across jurisdictions concerning the definition of “automated” 

when it comes to decision-making systems. For example, the Canadian government’s definition allows 

partial human involvement in what is defined as an “automated decision system.” See Directive on 

Automated Decision-Making: Appendix A - Definitions, CANADA.CA, https://www.tbs-sct.gc.ca/pol/doc-

eng.aspx?id=32592#appA [https://perma.cc/RR7E-5DLP] (An automated decision system “[i]ncludes 

any technology that either assists or replaces the judgment of the human decision-makers.”). Others, 

however, would refer to that as a “semi-automated system.” The preferable term for an AI system that 

has no human involvement may therefore be an “autonomous decision-making system.” 

 225 GDPR at art. 22(1); see also id. at 14 (Recital 71). 

 226 Id. at art. 22(3); see also id. at 14 (Recital 71). 
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showing the key decision points that formed the basis for the decision.227 

There must be a process in place for individuals to challenge or appeal the 

decision, taking into account the factors upon which the original decision 

was based, as well as any additional evidence the individual can assemble to 

support their claim.228 Right now, it is primarily up to lawyers and judges in 

the United States to provide these kinds of protections to individuals that 

have been subjected to automated decision-making.229 

In addition to violations of privacy in connection with personal data, AI 

itself can be alarmingly intrusive. Recently, one of the authors (Grossman) 

received the following message: “Hi Maura. I’m Neville, the co-founder of 

XXXXXXXX. I would like to discuss our remote proctoring features for 

online assessments & see if this can be useful to you. Our tech comes with 

face recognition, 2 face detection, mobile & book detection geo tagging and 

much more!” (company name redacted).230 

Because most educational instruction has moved online during the 

COVID-19 pandemic, the use of AI-based surveillance techniques for the 

purposes of proctoring exams has seen an increase at educational institutions. 

Proctorio is another fully automated “comprehensive learning integrity tool” 

used to monitor for cheating during exams.231 It requires the student to sit in 

a quiet place without anyone else present in the room, which can 

disproportionally affect students coming from disadvantaged economic 

 

 227 See id. at 14 (Recital 71). 

 228 See also id. at art. 22(3). 

 229 Two notable exceptions to this are the Fair Credit Reporting Act (“FCRA”), enacted in 1970, and 

the Equal Credit Opportunity Act (“ECOA”), enacted in 1974, both of which address automated decision-

making in the context of machine-based credit underwriting models. The Federal Trade Commission 

(“FTC”) Act [of 1914] authority to prohibit unfair and deceptive practices has also been used to address 

consumer injury arising from the use of AI and automated decision-making. See Andrew Smith, Using 

Artificial Intelligence and Algorithms, FED. TRADE COMM’N (Apr. 8, 2020, 9:58 AM), 

https://www.ftc.gov/news-events/blogs/business-blog/2020/04/using-artificial-intelligence-algorithms 

[https://perma.cc/K9Y8-5Z4V]. In a recent case involving a photo application that the FTC claimed 

deceived consumers about the use of facial recognition technology and the retention of photos and videos 

of users who had deactivated their accounts, as part of the proposed settlement with the company, 

Everalbum, Inc., the company was not only required to “obtain consumers’ express consent before using 

facial recognition technology on their photos and videos,” but also to “delete models and algorithms it 

developed by [impermissibly] using the photos and videos uploaded by its users.” Press Release, Fed. 

Trade Comm’n, California Company Settles FTC Allegations It Deceived Consumers about use of Facial 

Recognition in Photo Storage App, FTC.GOV (Jan. 11, 2021), https://www.ftc.gov/news-events/press-

releases/2021/01/california-company-settles-ftc-allegations-it-deceived-consumers 

[https://perma.cc/UQ7Z-KTFV]. 

 230 Invitation from Neville Katila, Co-Founder & Director at Eduswitch Solutions Private Limited, 

to connect on LinkedIn (Sept. 5, 2020) (on file with author Grossman). 

 231 See PROCTORIO, https://proctorio.com [https://perma.cc/P8E6-KN9T]. For an unvarnished 

student’s take on Proctorio, see Cassie Finley (@Angry_Cassie), TWITTER (Sept. 2, 2020, 10:26 PM), 

https://twitter.com/Angry_Cassie/status/1301360994044850182 [https://perma.cc/D2QT-VV3A]. 
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backgrounds that may only have access to Wi-Fi in public or shared spaces. 

When registering for the exam, the test-taker must provide a photo ID using 

the computer’s webcam, which will be compared to the test-taker’s face on 

the day of the exam using facial recognition software.232 The intent behind 

this process, to make sure that someone else is not taking the exam in place 

of the test- taker, is not unreasonable. But not everyone looks the same as 

their photo ID, perhaps because of weight gain or loss, illness, or gender 

transition. Before the start of the exam, the webcam must slowly be moved 

around the room to record the test-taker’s surroundings,233 ostensibly to 

confirm that nearby areas are free of materials that could be used to cheat. 

But what if the camera records a roommate’s illicit paraphernalia or illegal 

reading materials? Proctorio also records all sounds in the room, flags 

“suspicious behavior,” like taking one’s eyes off the screen, and scans for 

plagiarism.234 We do not know what other analyses Proctorio performs, and 

students do not have a choice to refuse such surveillance tools. We can 

expect to see an expansion in their use into employment and other settings.235 

E.    Lack of Transparency and Explainabilty 

One of the most widely proposed solutions to the “black-box”236 

problem of AI is to require transparency and explainability, both in terms of 

how the AI system works, as well as how it reached its decision (i.e., 

approved or denied for a loan), classification (i.e., eligible for a prime loan 

versus a sub-prime loan), or prediction/conclusion (i.e., the user will like the 

following movies, or the user should make the following grammatical 

corrections).237 Cynthia Rudin argues that models for high-stakes decisions 

 

 232 See ID Verification, PROCTORIO, https://proctorio.com/platform/id-verification 

[https://perma.cc/24DD-BLJW]. 

 233 See, e.g., Online Proctoring, PROCTORIO, https://proctorio.com/products/online-proctoring 

[https://perma.cc/5JSC-42VC]; Desk Scan Setting and Exam Environment under Frequently Asked 

Questions, PROCTORIO, https://proctorio.com/frequently-asked-questions [https://perma.cc/W8LT-

GJ2W]. 

 234 See Behavior under Frequently Asked Questions, PROCTORIO, https://proctorio.com/frequently-

asked-questions [https://perma.cc/YB3F-DUBR]; Plagiarism, PROCTORIO, 

https://proctorio.com/platform/plagiarism [https://perma.cc/H7VM-2PKZ]. 

 235 Recently, a colleague of author Grossman suggested that these kinds of monitoring tools might 

be useful to judges and adverse parties to assist them in assessing the credibility of witnesses during 

online depositions, hearings, and trials necessitated by the COVID-19 pandemic. The colleague had not 

considered the privacy implications. 

 236 A “black box” is “anything that has mysterious or unknown internal functions or mechanisms.” 

Black Box, MERRIAM WEBSTER.COM DICTIONARY, https://www.merriam-

webster.com/dictionary/black%20box [https://perma.cc/R5CB-E9XD]. 

 237 See, e.g., Ron Schmelzer, Towards a More Transparent AI, FORBES: COGNITIVE WORLD (May 

23, 2020, 1:28 PM), https://www.forbes.com/sites/cognitiveworld/2020/05/23/towards-a-more-

transparent-ai [https://perma.cc/K8TQ-2G2B]; Greg Satell & Josh Sutton, We Need AI That Is 



19:1 (2021) AI as Evidence 

61 

must provide explanations that reveal their inner workings and that 

algorithms that are inherently black-box should be avoided for such 

decisions.238 This remains an area of controversy. 

The technical challenge of explaining AI decisions is known as the 

“interpretability problem,”239 and an entire domain of research exclusively 

devoted to this problem has emerged, known as “Explainable AI” (“XAI”).240 

Those who advocate for XAI believe that AI can only be trustworthy if it can 

be explained to humans, although they acknowledge that the level or type of 

explanation may vary for different applications or users. NIST has outlined 

four principles of XAI which include (i) explanation—that AI systems 

deliver accompanying evidence or the reason(s) for all outputs; (ii) 

meaningful—that AI systems provide explanations that are understandable 

to individual users; (iii) explanation accuracy—that the explanations 

correctly reflect the AI system’s process for generating the outputs; and (iv) 

knowledge limits—that the AI system only operates under the conditions for 

which it was designed or when the system reaches sufficient confidence in 

its output.241 

One transparency project, the Defense Advanced Research Project 

Agency (“DARPA”) XAI program, aims to produce “glass-box” models that 

are explainable to a “human-in-the-loop” without sacrificing AI 

performance. 242 The term “glass box” has also been used to describe and 

monitor the inputs and outputs of an AI system with the purpose of verifying 

 

Explainable, Auditable, and Transparent, HARV. BUS. REV. (Oct. 28, 2019), https://hbr.org/2019/10/we-
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 239 See Explainable Artificial Intelligence, WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=Explainable_artificial_intelligence&oldid=1002122023 
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 240 See id. 

 241 See P. Jonathon Phillips et al., Four Principles of Explainable Artificial Intelligence 1–2 (NIST 

Working Paper No. 8312-draft 2020), 
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STIR8312%20%281%29.pdf [https://perma.cc/K7M6-9DUM]. 
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the system’s adherence to certain social, ethical, and legal values, therefore 

producing value-based explanations.243 

The problem with the requirement of transparency is that many modern 

AI techniques are not explainable because they are naturally opaque. While 

Decision Trees alone are explainable, when combined into Random Forests 

(i.e., ensembles of decision trees) they lose a certain degree of 

interpretability. Unlike code, which can be examined for bugs, it is often not 

apparent how a machine-learning model has been developed or works, 

especially when it employs deep learning or neural networks. It may be 

inexplicable why an algorithm mistakes a 3D-printed turtle for a rifle, or a 

baseball for an espresso,244 nor is there typically a way to “bug-fix” a way to 

the correct model. Developers can only improve the training data, choose 

different features or parameters to emphasize, and re-assess the output, but 

otherwise, it may not be obvious why the model is performing poorly. 

Another challenge is that AI models are not static; they constantly adapt and 

update over time. While there has been some development of models that are 

more interpretable, there is typically a tradeoff between accuracy and 

explainability, so explainable algorithms have not yet achieved widespread 

adoption, especially when they require a decrease in predictive performance. 

It is worth bearing in mind that there is great variability in the situations 

in which the law requires explanations from humans, such as strict liability, 

no-fault divorce, national security-related decisions, and jury 

determinations—where little to no explanation is required—versus direct 

discrimination, where intent must be proven, or administrative decision-

making where, at minimum, the decision must be shown to be non-

arbitrary.245 Even judicial decisions can vary in their need for transparency; 

decisions on discovery motions are granted considerable deference, while a 

decision by a judge delivering a criminal sentence must provide a thorough 

explanation. 

Generating explanations is not without cost or effect, and the utility of 

explanations must be balanced against the time and cost of generating them, 

including the benefits that are lost by imposing that requirement.246 By way 

of example, a doctor who was required to explain every diagnosis and 

 

 243 WIKIPEDIA, supra note 239. For a more technical discussion see Arun Rai, Explainable AI: from 

Black Box to Glass Box, 48 J. ACAD. MARKETING SCI. 137 (2020). 

 244 See James Vincent, Google’s AI Thinks This Turtle Looks Like a Gun, Which Is a Problem, 

VERGE, https://www.theverge.com/2017/11/2/16597276/google-ai-image-attacks-adversarial-turtle-

rifle-3d-printed [https://perma.cc/YXS9-MBYA]. See also Matthew Hutson, A Turtle or a Rifle? Hackers 

Fool AIs into Seeing the Wrong Thing, SCI., https://www.sciencemag.org/news/2018/07/turtle-or-rifle-

hackers-easily-fool-ais-seeing-wrong-thing [https://perma.cc/3UU7-NA65]. 

 245 See Doshi-Velez & Kortz, supra note 237, at 5–6. 

 246 Id. at 3. 
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treatment plan would likely make fewer mistakes, but would also see far 

fewer patients because they were busy making patient notes.247 Moreover, it 

is well known that humans are notoriously inaccurate when providing post-

hoc rationales for their decisions.248 The need to provide explanations can 

also impact the decision-maker’s choices in the same way that “observed 

particles behave differently.”249 Finally, it has also been shown that access to 

an explanation can actually decrease users’ trust in some decisions.250 

Some commentators have argued that there is no real difference 

between inexplicable AI systems and medications where the neurobiological 

mechanism through which the drugs operate is not well understood. They 

argue that this is why we have the Food and Drug Administration (“FDA”) 

to ensure that appropriate testing is undertaken to ensure that drugs are safe 

before they are released to the public, and that the same should apply for 

high-impact AI systems.251 The bottom line for lawyers and judges is that 

when an AI system is not transparent or explainable, then ensuring its 

validity and reliability increase in importance. 

The Loomis case discussed above in section V highlights a related and 

critical issue that arises with respect to current AI systems and is increasingly 

likely to arise in court. Even when the data sources and training data are 

known, and the features, their weights, and parameter choices can be 

described, when it comes to litigation, AI providers generally assert that 

information concerning the data and the algorithms are proprietary trade 

secrets and refuse to disclose them, thereby impeding the ability to challenge 

their scientific validity and reliability, and to address the many other 

questions they raise. This is precisely what happened in the Loomis case, 

where Mr. Loomis challenged the Circuit Court’s use of COMPAS at 

sentencing because it violated his due process rights when it interfered with 

his right “to be sentenced based upon accurate information, in part because 

the proprietary nature of COMPAS prevent[ed] him from assessing its 

 

 247 Id. 

 248 Id. (citing Richard E. Nisbett & Timothy D. Wilson, Telling More Than We Can Know: Verbal 

Reports on Mental Processes, 84 PSYCH. REV. 231 (1977)). 

 249 Id. at 3 (citing William F. Messier Jr. et al., The Effect of Accountability on Judgment: 
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https://en.wikipedia.org/w/index.php?title=Observer_effect_(physics)&oldid=1000916691 
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 250 See Hosanagar & Jair, supra note 237. 

 251 See Andrew Tutt, An FDA for Algorithms, 69 ADMIN. L. REV. 83 (2017). The FDA even recently 

published its own paper, see FDA, ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING (AI/ML)-BASED 

SOFTWARE AS A MEDICAL DEVICE (SAMD) ACTION PLAN (2021). 
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accuracy.”252 Northpointe, Inc., the developer of COMPAS, considers it to 

be “a proprietary instrument and a trade secret,” and it accordingly declined 

to disclose how the risk scores were determined or how the factors were 

weighted.253 Mr. Loomis argued that because COMPAS’s developer would 

not disclose this information, he was denied information that the Circuit 

Court considered at his sentencing and therefore the ability to refute it.254 Mr. 

Loomis further contended that unless he could review how the factors were 

weighed and how the risk score was determined, the accuracy of the 

COMPAS assessment could not be verified.255 From a technical perspective, 

these were all valid arguments. Yet, the Wisconsin Supreme Court gave them 

short shrift, responding that while it agreed that Mr. Loomis could not review 

and challenge how the COMPAS algorithm calculates risk, he could review 

and challenge the resulting risk scores themselves.256 The Court concurred 

with Mr. Loomis that “the risk scores do not explain how the COMPAS 

program uses information to calculate the risk scores. However, 

Northpointe’s 2015 Practitioner’s Guide . . . explains that the risk scores are 

based largely on static information (criminal history), with limited use of 

some dynamic variables (i.e. criminal associates, substance abuse).”257 Thus, 

the Court asserted, “to the extent that Loomis’s risk assessment is based upon 

his answers to questions and publicly available data about his criminal 

history, Loomis had the opportunity to verify that the questions and answers 

listed on the COMPAS report were accurate.”258 Loomis also “had an 

opportunity to challenge his risk scores by arguing that other factors or 

information demonstrate their inaccuracy.”259 Despite citing to studies that 

have raised questions about the accuracy of COMPAS and its tendency to 

disproportionally classify minority offenders as higher risk because of 

factors that may be out of their control, 260 the Court held that the tool could 

nonetheless be used with appropriate warnings, including that: 

(1) the proprietary nature of COMPAS had been invoked to prevent 

disclosure of information relating to how factors are weighed or how risk 

scores are to be determined; (2) [COMPAS] compares defendants to a 

national sample, but no cross-validation study for a Wisconsin population 
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has yet been completed; (3)some studies of COMPAS risk assessment scores 

have raised questions about whether they disproportionately classify 

minority offenders as having a higher risk of recidivism; and (4) risk 

assessment tools must be constantly monitored and re-normed for accuracy 

due to changing populations and subpopulations.261 

The many risks of AI raise questions as to the advisability of protecting 

the rights of RNA providers over the rights of criminal defendants.262 

Warnings, alone, do not make up for denying a party’s ability to challenge 

the accuracy of an AI tool. The Court never addresses why a protective order 

would be insufficient protection for Northpointe, and this question can be 

expected to be an area that will be highly litigated as we move forward. 

F.    Lack of Accountability 

Another place where we can expect to see significant challenges for 

lawyers and judges is in the area of accountability of AI, and the legal and 

regulatory frameworks that surround it. At present, there are relatively few 

laws or regulations governing AI and automated decision making.263 The 

 

 261 Id. ¶ 66. 

 262 Indeed, the AI Now Institute (an interdisciplinary research institute affiliated with New York 

University that is dedicated to understanding the social implications of AI technologies), see AINOW, 

www.ainowinstitute.org [https://perma.cc/G8LZ-MSPJ], has recommended that “AI companies should 

waive trade secrecy and other legal claims that stand in the way of accountability in the public sector. 

Vendors and developers who create AI and automated decision systems for use in government should 

agree to waive any trade secrecy or other legal claim that inhibits full auditing and understanding of their 

software. Corporate secrecy laws are a barrier to due process: they contribute to the ‘black-box effect’ 

rendering systems opaque and unaccountable, making it hard to assess bias, contest decisions, or remedy 

errors. Anyone procuring these technologies for use in the public sector should demand that vendors 

waive these claims before entering into any agreements.” MEREDITH WHITTAKER ET AL., AI NOW INST., 

AI NOW REPORT 2018, 5 (2018), https://ainowinstitute.org/AI_Now_2018_Report.pdf 

[https://perma.cc/L5U6-8KM]. 

 263 See Mark MacCarthy, AI Needs More Regulation, Not Less, BROOKINGS INST. (Mar. 9, 2020), 

https://www.brookings.edu/research/ai-needs-more-regulation-not-less [https://perma.cc/S747-WHA4]; 

Devin Coldewey, AI Desperately Needs Regulation and Public Accountability, Experts Say, 

TECHCRUNCH (Dec. 7, 2018) (discussing the AI NOW REPORT 2018, supra note 262), 

https://techcrunch.com/2018/12/07/ai-desperately-needs-regulation-and-public-accountability-experts-

say [https://perma.cc/A747-UPPM]. For other views on the regulation of AI, see generally Richard 

Diffenthal et al., Artificial Intelligence – Time to Get Regulating?, GLOBAL MEDIA TECH. & COMM. Q. 

(2018); Oren Etzioni, How to Regulate Artificial Intelligence, N.Y. TIMES (Sept. 1, 2017), 

https://www.nytimes.com/2017/09/01/opinion/artificial-intelligence-regulations-rules.html 

[https://perma.cc/NWC4-TGD5]; Matthew U. Scherer, Regulating Artificial Intelligence Systems: Risks, 

Challenges, Competencies, and Strategies, 29 HARV. J. L. & TECH. 353 (2016). For a discussion of some 

of the arguments against the regulation of AI, see Andres Fogg, Artificial Intelligence Regulation: Let’s 

Not Regulate Mathematics!, IMPORT.IO (Oct. 13, 2016), https://www.import.io/post/artificial-

intelligence-regulation-lets-not-regulate-mathematics [https://perma.cc/ARZ4-ZNAX]. And finally, for 

useful resources surveying global AI governance and regulation issues, curated by the Multidisciplinary 

Institute on Artificial Intelligence (“MIAI”) at Grenoble Alpes, see AI Governance and Regulation, AI-

REGULATION, https://ai-regulation.com/ai-governance [https://perma.cc/AL6V-LZEE]. On April 21, 
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existing frameworks seem ill-prepared to address the unique capabilities and 

characteristics of AI. For example, in August 2019, Stephen L. Thaler of the 

Artificial Inventor Project264 tried to patent two inventions—a food container 

and a flashing warning light—with the U.K.’s Intellectual Property Office 

(“UKIPO”) and the European Patent Office (“EPO”).265 The inventor on the 

patent was listed as “DABUS.”266 Both regulators held that while the 

inventions themselves were patent-worthy, the applications were rejected 

because the “inventor” was not a natural person (i.e., a human).267 The 

UKIPO’s decision was upheld by the U.K. High Court in October 2020, and 

was further appealed to the U.K. Court of Appeal, which, in September 2021, 

also denied the patent.268 The result was no different in the United States, 

where in April 2020, the U.S. Patent and Trademark Office (“USPTO”) 

likewise ruled that AI systems cannot be credited as an inventor in a patent, 

stating that: “[U]nder current law, only natural persons may be named as an 

inventor in a patent application.”269 The USPTO’s decision was appealed to 

 

2021, the European Commission released a long-awaited, comprehensive draft regulation on AI. See 

Europe Fit for the Digital Age: Commission Proposes New Rules and Actions for Excellence and Trust 

in Artificial Intelligence, European Commission Press Release (Apr. 21, 2021), 

https://ec.europa.eu/commission/presscorner/detail/en/IP_21_1682. 

 264 The Artificial Intelligence Project is a “site dedicated to a project seeking intellectual property 

rights for the autonomous output of artificial intelligence.” The Artificial Inventor Project, ARTIFICIAL 

INVENTOR, https://artificialinventor.com [https://perma.cc/WJE3-DENF]. 

 265  A copy of the two patent applications, EP3564144 (food container) and EP3563896 (neural 

flame), can be found here: Patents and Patent Applications, ARTIFICIAL INVENTOR, 

https://artificialinventor.com/patent-applications [https://perma.cc/YK97-3UCJ]. See also Amy Sandys, 

UK High Court Rejects Idea of Inventor by AI system Dabus, JUVE PATENT (Oct. 9, 2020), 

https://www.juve-patent.com/news-and-stories/cases/uk-high-court-rejects-idea-of-invention-by-ai-

system-dabus [https://perma.cc/BQ2J-44NU]. 

 266 Sandys, supra note 265. A technical description of DABUS, which stands for “device for the 

autonomous bootstrapping of unified sentience,” id., can be found here: DABUS Described, 

IMAGINATION ENGINES, https://imagination-engines.com/dabus.html [https://perma.cc/6D94-R5K3]. 

 267 Sandys, supra note 265. An appeal of the EPO denial is scheduled to be heard by the EPO Board 

of Appeal on Dec. 21, 2021. See Seiko Hidaka, Court of Appeal – AI Generated Inventions Denied UK 

Patent in DABUS Case, GOWLING WLG (Sept. 23, 2021), https://gowlingwlg.com/en/insights-

resources/articles/2021/ai-invention-denied-patent-in-dabus-case [https://perma.cc/G25F-5ZDY]. 

 268 See Cynthia O’Donoghue & Angelika Bialowas, UK Court of Appeal Rules AI is Not an Inventor, 

REEDSMITH TECH. LAW DISPATCH (Sept. 26, 2021), 

https://www.technologylawdispatch.com/2021/09/in-the-courts/uk-court-of-appeal-rules-ai-is-not-an-

inventor [https://perma.cc/UC8E-FMHX]. 

 269 Petition Decision: Inventorship Limited to Natural Persons, USPTO BULLETIN (Apr. 27, 2020), 

https://content.govdelivery.com/accounts/USPTO/bulletins/287fdc9 [https://perma.cc/37QD-RQG2]; 

see also Jon Porter, US Patent Office Rules That Artificial Intelligence Cannot Be a Legal Inventor, 

VERGE, https://www.theverge.com/2020/4/29/21241251/artificial-intelligence-inventor-united-states-

patent-trademark-office-intellectual-property [https://perma.cc/X5UV-Q35K]. For a discussion of the 

reasons why the U.S. should grant AI inventor status, see Ernest Fok, Challenging the International 

Trend: The Case for Artificial Intelligence Inventorship in the United States, 19 SANTA CLARA J. INT’L 

LAW 51 (2021). 
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the U.S District Court for the Eastern District of Virginia. On September 9, 

2021, the Court affirmed the decision of the USPTO.270 However, two 

months before that, in July of 2021, South Africa was the first country to 

award DABUS a patent for its AI-generated invention.271 Australia followed 

shortly thereafter.272 

A December 2018 report published by the AI Now Institute makes the 

point that AI-based tools have been deployed with little regard to their 

potential negative effects or even sufficient documentation of their positive 

ones. 273 They lament that untested algorithms are employed in places where 

they can deeply affect thousands, if not millions of people, with no systems 

in place to monitor or stop them, other than limited ethical precepts often 

propounded by the very same companies that created the systems.274 One 

particularly egregious example that AI Now cites surfaced in June 2018, 

immediately after the U.S. Department of Homeland Security implemented 

a family separation policy that forcibly removed immigrant children from 

their families, when it was revealed that U.S. Immigration and Customs 

Enforcement (“ICE”) had altered its own risk-assessment algorithm so that 

it produced only one result: it recommended “detain” for 100% of the 

immigrants in custody.275 Another concerning example described a voice 

recognition system in the U.K. designed to detect immigration fraud, which 

cancelled thousands of visas resulting in the deportation of people in error.276 

Documents leaked in July 2018, revealed that IBM Watson was rendering 

 

 270 Gourdin Sirles & Baldassare Vinti, Update on Artificial Intelligence: Court Rules That AI Cannot 

Qualify As “Inventor,” THE NAT’L L. REV. (Sept. 9, 2021), 

https://www.natlawreview.com/article/update-artificial-intelligence-court-rules-ai-cannot-qualify-

inventor [https://perma.cc/D4NZ-F2VJ]. 

 271 See Sam Udovich, Recent Developments in Artificial Intelligence and IP Law: South Africa 

Grants First Patent for AI-Created Invention, THE NAT’L L. REV. (Aug. 3, 2021), 

https://www.natlawreview.com/article/recent-developments-artificial-intelligence-and-ip-law-south-

africa-grants-world-s [https://perma.cc/ZE2J-4PS2]. 

 272 See John Collins, Natalie Shoolman & Rose Jenkins, Robots Are Taking Over the Patent World 

– AI Systems or Devices Can Be “Inventors” Under the Australian Patents Act, KLUWER PATENT BLOG 

(Sept. 8, 2021), http://patentblog.kluweriplaw.com/2021/09/08/robots-are-taking-over-the-patent-world-

ai-systems-or-devices-can-be-inventors-under-the-australian-patents-act [https://perma.cc/ZK3Y-

RYTM]. 

 273 See generally WHITTAKER ET AL., supra note 262. 

 274 See generally id. 

 275 See id. at 10 (citing Nikhil Sonnad, US Border Agents Hacked Their ‘Risk Assessment’ System to 

Recommend Detention 100% of the Time, QUARTZ (June 26, 2018), https://qz.com/1314749/us-border-

agents-hacked-their-risk-assessment-system-to-recommend-immigrant-detention-every-time 

[https://perma.cc/28U4-VU8N]). 

 276 See id. (citing Nikhil Sonnad, A Flawed Algorithm Led the UK to Deport Thousands of Students, 

QUARTZ (May 3, 2018), https://qz.com/1268231/a-toeic-test-led-the-uk-to-deport-thousands-of-students 

[https://perma.cc/4U5S-8DXA]). 
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“unsafe and incorrect” cancer treatment recommendations.277 An 

investigation conducted in September 2018, unearthed the fact that IBM was 

also working in concert with the New York City Police Department 

(“NYPD”) to build an “ethnicity-detection” algorithm to search faces based 

on race, using police camera footage of thousands of people on the streets of 

New York taken without their knowledge or consent.278 This is likely just the 

tip of the iceberg. 

On this basis, the AI Now Institute argues, compellingly, that the 

“frameworks presently governing AI are not capable of ensuring 

accountability,” and that “[a]s the pervasiveness, complexity, and scale of 

these systems grow, the lack of meaningful accountability and oversight—

including basic safeguards of responsibility, liability, and due process—is an 

increasingly urgent concern.”279 The responsibility for oversight will 

undoubtedly fall to the legal justice system until there is direct intervention 

by regulatory agencies. 

Finally, AI Now highlights the large gap between those who develop 

and profit from AI, and those most likely to suffer the consequences of its ill 

effects.280 They emphasize several reasons for this discrepancy, including 

insufficient government oversight, insufficient governance structures within 

tech companies, a highly concentrated AI sector subject to constant pressure 

to innovate and commercialize, power asymmetries between the tech 

companies and the people they serve, and a vast cultural divide between 

those responsible for technical research and development and the diverse 

populations on which AI systems are deployed.281 In an earlier report from 

September 2018, the AI Now Institute, in collaboration with the Center on 

Race, Inequality, and the Law and the Electronic Frontier Foundation 

(“EFF”), discussed the growing number of legal challenges to the use of 

autonomous systems by government agencies in decisions that affect 

individual rights, such as Medicaid and disability rights, public teacher 

 

 277 See id. (citing Casey Ross & Ike Swetlitz, IBM’s Watson Supercomputer Recommended ‘Unsafe 

and Incorrect’ Cancer Treatments, Internal Documents Show, STAT (July 25, 2018), 

https://www.statnews.com/wp-content/uploads/2018/09/IBMs-Watson-recommended-unsafe-and-

incorrect-cancer-treatments-STAT.pdf [https://perma.cc/H2PN-LG8L]). 

 278 See id. (citing George Joseph & Kenneth Lipp, IBM Used NYPD Surveillance Footage to Develop 

Technology That Lets Police Search By Skin Color, INTERCEPT (Sept. 6, 2018, 6:00 AM), 

https://theintercept.com/2018/09/06/nypd-surveillance-camera-skin-tone-search [https://perma.cc/2ZR5-

DGWW]). 

 279 Id. at 7. 

 280 See id. 

 281 See id. 
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employment evaluations, juvenile criminal risk assessment, and criminal 

DNA analysis.282 

As the development, commercialization, and use of AI proliferates, so 

too will questions about how the risks of AI will be apportioned. These 

questions will be complicated by the vast sea of machine-learning 

applications in which humans are more or less in- or on-the-loop, and where 

the systems themselves continuously learn and can act in increasingly 

unpredictable ways. The present state of the law governing liability for AI 

systems does not specify who should be held accountable for errors and 

accidents caused by AI, and under what circumstances. There are many 

possibilities: the data collector/analyst, the inventor, the designer/developer, 

the manufacturer, the retailer, the user, the AI itself, some combination of 

the above, or none at all. The choice of who to hold accountable, and when, 

is not without consequences for those who can afford to enter the field and 

for the future of innovation itself. 

Some commentators have argued that AI should not be humanized and, 

from an ethical (and therefore legal) vantage point, should not be treated 

differently from any other technology, equipment, or tool “we use to extend 

our own abilities and to accelerate progress on our own goals.”283 It also has 

been noted by others that concepts from tort and products liability law (e.g., 

design or manufacturing defect, failure to warn, negligent operation, and 

strict liability) have been applied and will continue to develop creatively in 

 

 282 See AI NOW INST., LITIGATING ALGORITHMS: CHALLENGING GOVERNMENT USE OF 

ALGORITHMIC DECISION SYSTEMS (2018). 

 283 See JOANNA J. BRYSON, CLOSE ENGAGEMENTS WITH ARTIFICIAL COMPANIONS: KEY SOCIAL, 

PSYCHOLOGICAL, ETHICAL AND DESIGN ISSUES 63 (Yorick Wilks ed., 2010). But see Ryan Abbott, The 

Reasonable Computer: Disrupting the Paradigm of Tort Liability, 86 GEO. WASH. L. REV. 1, 4–5 (2018) 

(“This Article employs a functional approach to distinguish an autonomous computer, robot, or machine 

from an ordinary product. Society’s relationship with technology has changed. Computers are no longer 

just inert tools directed by individuals.”). See also Iria Giuffrida, Liability for AI Decision-Making: Some 

Legal and Ethical Considerations, 88 FORDHAM L. REV. 439, 440 (2019) (addressing “whether AI merits 

a new approach to deal with the liability challenges it raises when humans remain ‘in’ or ‘on’ the loop.”); 

Karni A. Chagal-Feferkorn, Am I An Algorithm or a Product? When Products Liability Should Apply to 

Algorithmic Decision-Makers, 30 STAN. L. & POL’Y REV. 61, 82–86 (2019) (“Thinking algorithms, 

despite their nature as information-based and although they may frequently cause damage regardless of a 

defect, may thus nevertheless be governed by products liability.”); Frank H. Easterbrook, Cyberspace 

and the Law of the Horse, U. CHI. LEGAL F. 207 (1996) (arguing that the legal system is dynamic and 

capable of coping with new challenges by so-called new technologies). 
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this context.284 But others believe that may not be the case,285 because 

machine-learning applications are dynamic; they use data that is constantly 

updated and combined in new ways. AI systems are by their nature not 

intended to be static; they are systems that learn and adapt often in 

unpredictable ways. Therefore, they pose issues that are more complex than 

tools that are stable. Moreover, when the technology is “black box,” it may 

be inherently impossible to determine how and why the system reached the 

conclusion it did or to reverse engineer the decision-making process. Classic 

tort law assigns liability based on fault. For example, a product is defectively 

designed when a reasonable alternative was possible and could have avoided 

foreseeable harm. These questions about alternative design or foreseeability 

simply may not be answerable when it comes to AI. 

Consider, for example, the following hypothetical: 

Company is responsible for operating a dam and generating hydroelectric 

power. Company decides to modernize in order to be more efficient. It replaces 

its human-operated control system with a fully autonomous AI system. To 

enable the AI to function, Company installs a large number of sensors 

throughout the dam and the area in which the dam is. They collect temperature, 

moisture, stress, and other readings and send them via the internet to the AI. 

The “AI” actually consists of a number of components. The primary component 

is located in Company’s primary corporate office some five hundred miles 

away. It constantly monitors the sensor data and varies water flow on a 

continuous basis. It implements its decisions via instructions to its 

implementation module in the dam control room on site. Meanwhile the AI 

modifies its programming based upon its ongoing experience of the interaction 

 

 284 See, e.g., Artificial Intelligence Litigation: Can the Law Keep Pace with the Rise of the 

Machines?, QUINN EMANUEL URQUHART & SULLIVAN, LLP (Dec. 2016), 

https://www.quinnemanuel.com/the-firm/publications/article-december-2016-artificial-intelligence-

litigation-can-the-law-keep-pace-with-the-rise-of-the-machines [https://perma.cc/3LYN-CC3K]. The 

treatment of AI systems under criminal law poses unique issues because of the mens rea requirement for 

imposing criminal liability. For a discussion of these issues, see Francesca Lagioia & Giovanni Sartor, AI 

Systems Under Criminal Law: A Legal Analysis and a Regulatory Perspective, 33 PHIL. & TECH. 433 

(2020). For an interesting take on how the law might address artificially intelligent robots that misbehave, 

see Mark A. Lemley & Bryan Casey, Remedies for Robots, 86 U. CHI. L. REV. 1311 (2019). 

 285 See, e.g., Matthew U. Scherer, supra note 263, at 388–92. There is extensive debate in both the 

literature and the popular press over whether AI should be regulated and what form that regulation (if 

any) should take. See sources cited supra note 263. See also, e.g., Regulation of Artificial Intelligence, 

WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=Regulation_of_artificial_intelligence&oldid=1000320251 

[https://perma.cc/ZM5S-TCVN]; R. David Edelman, Here’s How to Regulate Artificial Intelligence 

Properly, WASH. POST (Jan. 13, 2020), https://www.washingtonpost.com/outlook/2020/01/13/heres-

how-regulate-artificial-intelligence-properly [https://perma.cc/5857-NNR9]; Paul Chadwick, To 

Regulate AI We Need Laws, Not Just a Code of Ethics, GUARDIAN (Oct. 28, 2018), 

https://www.theguardian.com/commentisfree/2018/oct/28/regulate-ai-new-laws-code-of-ethics-

technology-power [https://perma.cc/J8G3-FCW2]. 
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of all the monitored sensor factors in order to produce the most electricity at the 

cheapest operating cost while maintaining community safety. The AI is also 

connected, via the internet, to other dam systems so that it can learn from how 

those systems are operating. 

 

One night, the AI fully opens the emergency floodgates and floods one thousand 

homes downstream. Company investigates and cannot determine causation. 

Possibilities include: defective AI design; defective AI training; defective 

sensor design and/or manufacture; unforeseen consequences from multiple data 

inputs in real world circumstances; erroneous AI operation based upon sensor 

or remote data; and external interference, that could have been accidental or 

intentional, by either one or more private actors or on behalf of a foreign 

organization or nation. Notably, the sensors are from multiple companies and 

may have never been used together prior, certainly not in the instant 

configuration.286 

It is entirely possible that causation and fault may be indeterminate 

under these circumstances.287 Given multiple potential tortfeasors, courts are 

usually able to apportion damages in a reasonable manner, but that assumes 

that both the tortfeasors and causation can be identified.288 While an analysis 

of proper legal and regulatory regimes for AI and/or whether we need an 

entirely new regime such as legal personhood for AI289 is beyond the scope 

of this paper, it is clear that questions about accountability for AI failures 

will remain in the hands of the courts for the foreseeable future. 

 

 286 Giuffrida, supra note 283, at 446–47 (attributed to Professor Frederic I. Lederer, Chancellor 

Professor of Law, William & Mary Law School, see Fredric I. Lederer, WM. & MARY L. SCH., 

https://law2.wm.edu/faculty/bios/fulltime/filede.php [https://perma.cc/C8UT-DGYN]). 

 287 See id. While, in some respects, the hypothetical presented might sound like a classic engineering 

malpractice claim, or something that would be prohibited by a regulator, it raises the issue of how to 

harness advancements in technology without, at the same time, hamstringing innovation through the 

litigation process. There is always a risk-reward tradeoff with advances in technology; early adopters 

assume greater risk than late adopters. A further discussion of this issue, however, is beyond the scope of 

this paper. 

 288 Id. 

 289 See MIREILLE HILDEBRANT, Legal Personhood for AI?, in LAW FOR COMPUTER SCIENTISTS 237 

(2019). See also John-Stewart Gordon, Artificial Moral and Legal Personhood, 36 AI & SOC. (2020); 

Tyler L. Jaynes, Legal Personhood for Artificial Intelligence: Citizenship as the Exception to the Rule, 

35 AI & SOC. 343 (2020). For a discussion of the perspective of the European Parliament on this issue, 

see Markus Häuser, Do Robots Have Rights? The European Parliament Addresses Artificial Intelligence 

and Robotics, CMS LAW-NOW (June 4, 2017), https://www.cms-lawnow.com/ealerts/2017/04/do-robots-

have-rights-the-european-parliament-addresses-artificial-intelligence-and-robotics 

[https://perma.cc/HH6E-X4E3]. 
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G.    Lack of Resilience 

Resilience refers to the degree to which AI systems can detect and resist 

both intentional and unintentional efforts to cause machine-learning models 

to fail, or to otherwise adapt to risk.290 While researchers have developed 

measures to protect AI systems from such failures,291 sophisticated hackers 

quickly learn ways to circumvent these defensive measures, and so it goes in 

a vicious cycle. 

One of the biggest challenges that has emerged along with the 

introduction of digital evidence is the ease with which it can be altered 

through means such as spoofing.292 Recently, a family law attorney in 

California reported on fake evidence used in several of his divorce cases.293 

In one particular matter, where a husband had been granted temporary 

custody of the children, the wife submitted text messages as evidence of 

domestic abuse perpetrated by the husband.294 The wife was granted a 

Domestic Violence Restraining Order (“DVRO”) and the three children were 

removed from the custody of husband, with no visitation permitted, pending 

resolution of the charges related to the threats contained in the text messages 

he had allegedly sent her.295 The only problem was that the husband had not 

sent the text messages.296 All the wife did was change the name associated 

with someone else’s phone number in her cell phone to her husband’s name 

 

 290 See Nathan Michael, Shield AI Fundamentals: On Resilient Intelligence, SHIELD AI (June 25, 

2019), https://www.shield.ai/content/2019/6/25/shield-ai-fundamentals-on-resilient-intelligence 

[https://perma.cc/Y5CD-KWEM]. 

 291 See, e.g., Shilin Qui et al., Review of Artificial Intelligence Adversarial Attack and Defense 

Technologies, 9 APPLIED SCI. 909 (2019); Ali Chehab et al., Machine Learning for Network Resilience: 

The Start of a Journey, PROC. 2018 5TH INT’L CONF. ON SOFTWARE DEFINED SYS. (“SDS”). 59 (2018); 

Yevgeniy Vorobeychik, Adversarial AI, PROC. 25TH INT’L JOINT CONF. ON ARTIFICIAL INTELL. (“IJCAI-

16”) 4094 (2016). 

 292 “Spoofing is the act of disguising a communication from an unknown source as being from a 
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in order to execute a large cyber attack. . . .” What Is Spoofing? Spoofing Defined, Explained, and 

Explored, FORCEPOINT, https://www.forcepoint.com/cyber-edu/spoofing [https://perma.cc/7KJP-EC6X]. 

 293 M. Jude Egan, Deep Fakes in Divorce Court: Manipulated Electronic Evidence and What to Do 

About It, LEGALTECH NEWS (Aug. 20, 2020), https://www.law.com/therecorder/2020/08/20/deep-fakes-
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8V9D]. Fake evidence is becoming a major challenge for judges and lawyers. See Matt Reynolds, Courts 

and Lawyers Struggle with Growing Prevalence of Deepfakes, ABA J., 
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deepfakes [https://perma.cc/N9M6-GXE3]. 
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 296 Id. 
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and then sent herself the threatening texts.297 When she printed out the texts 

to attach to the application, the husband’s name appeared at the top of the 

messages and made it appear as if he had sent the messages.298 Since judges 

in California often read DVRO requests on written pleadings, without notice 

to the other party, the restrained party may not have an opportunity to 

challenge the Temporary Restraining Order (“TRO”) until a hearing is 

held.299 In this case, the hearing was continued for almost four months due to 

the intervening Christmas Holiday and other events.300 At the hearing, the 

husband was able to offer his monthly phone statement showing that he had 

never sent his wife a single text message on the date at issue, or any other 

day that month.301 The judge dismissed the DVRO, but did not award the 

husband full custody of the children.302 Fake evidence can be so sophisticated 

and convincing that it can take a forensic examiner to determine whether the 

evidence is real or not, but such expert assistance can be quite expensive in 

the average case. Photographs, audiotapes, and video images are also easily 

manipulated. While humans have a strong tendency to believe their own eyes 

and ears, and digital evidence has traditionally been given considerable 

credence, things are not always what they seem to be. This problem can cause 

judges to be reticent to grant domestic violence TROs when they are needed, 

and to be suspicious of other evidence that is actually authentic. This 

problem will only be exacerbated by AI. 

“Adversarial AI” refers to the use of the very power of AI to pose 

malicious threats.303 Such techniques attempt to fool machine-learning 

models by supplying deceptive input(s), most often to cause some kind of 

malfunction. Adversarial AI can be used to attack just about any kind of 

system built on AI technology, from causing an automated email message to 

disclose sensitive data such as credit card numbers, to tricking a computer 
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 300 Id. 
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 303 See Adversarial Machine Learning, WIKIPEDIA, 
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vision system in an automated vehicle by placing stickers on road signs, 

causing the vehicle to mistake a stop sign for a merge or speed limit sign.304 

By way of example, McAfee attacked Tesla’s former Mobileye system, 

fooling it into driving 50 mph over the speed limit, by adding a two-inch strip 

of black tape to a speed limit sign.305 Adversarial patterns on glasses or 

clothing can deceive facial recognition systems.306 The possibilities are 

endless. 

The mechanisms through which such attacks operate can differ, as can 

their specificity; a targeted attack attempts to allow a specific intrusion or 

disruption (e.g., an attempt to gain access to personal information), whereas 

an indiscriminate attack creates general mayhem. 

Evasion attacks are the most prevalent form of adversarial attack.307 

Spammers and hackers attempt to evade detection by obfuscating the content 

of spam or malware.308 Samples of data are modified to evade detection so as 

to be classified as legitimate.309 Another example of an evasion might be a 

spoofing attack against a biometric verification system, in which fake 

biometric traits may be exploited to impersonate a legitimate user.310 

Poisoning, on the other hand, is the adversarial contamination of training 

 

 304 See Madeleine Clare Elish, When Humans Attack: Re-thinking Safety, Security, and AI, POINTS: 

DATA & SOC. (May 14, 2019), https://points.datasociety.net/when-humans-attack-re-thinking-safety-

security-and-ai-b7a15506a115 [https://perma.cc/V7SQ-X834]; MILES BRUNDAGE ET AL., THE 

MALICIOUS USE OF ARTIFICIAL INTELLIGENCE: FORECASTING, PREVENTION, AND MITIGATION (2018). 

 305 Brian Barrett, Security News This Week: A Tiny Piece of Tape Tricked Teslas Into Speeding Up 

50 MPH, WIRED, https://www.wired.com/story/tesla-speed-up-adversarial-example-mgm-breach-

ransomware [https://perma.cc/5EUV-6RZL]. 

 306 See, e.g., Aaron Holmes, These Clothes Use Outlandish Designs to Trick Facial Recognition 

Software into Thinking You’re Not Human, BUS. INSIDER, https://www.businessinsider.com/clothes-

accessories-that-outsmart-facial-recognition-tech-2019-10 [https://perma.cc/2RU7-JA5H]; John 

Seabrook, Dressing for the Surveillance Age, NEW YORKER (Mar. 9, 2020), 

https://www.newyorker.com/magazine/2020/03/16/dressing-for-the-surveillance-age 

[https://perma.cc/HVM8-7DW5]; Simen Thys et al., Fooling Automated Surveillance Cameras: 

Adversarial Patches to Attack Personal Detection, arXiv:1904.08653v1 [cs.CV] (Apr. 18, 2019), 

https://arxiv.org/pdf/1904.08653.pdf. 

 307 WIKIPEDIA, supra note 303. 

 308 See id. 

 309 See Ilja Moisejevs, Evasion Attacks on Machine Learning (or “Adversarial Examples”), 

TOWARDS DATA SCI. (July 14, 2019), https://towardsdatascience.com/evasion-attacks-on-machine-

learning-or-adversarial-examples-12f2283e06a1 [https://perma.cc/XR6Z-2CFQ]. For a more technical 

discussion of evasion, see, for example, Blaine Nelson et al., Query Strategies for Evading Convex-

Inducing Classifiers, 13 J. MACH. LEARN. 1293 (2012). 

 310 See Danny Thakkar, Spoofing Fingerprint Scanner and Spoof Detection: How Do They Work?, 

BAYOMETRIC, https://www.bayometric.com/spoofing-fingerprint-scanner-and-spoof-detection 

[https://perma.cc/CPH3-CEWF]; For a more technical discussion of spoofing, see, for example, Ricardo 

N. Rodrigues et al., Robustness of Multimodal Biometric Fusion Methods against Spoof Attacks, 20 J. 

Visual Lang. and Computing 169 (2009). 
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data.311 An attacker may poison such data by injecting malicious samples that 

disrupt subsequent retraining. 

Other than spam, perhaps the most well-known adversarial attacks are 

deepfakes, synthetic media in which a person in an existing image or video 

is replaced with someone else’s likeness.312 While faking content is not new, 

deepfakes leverage powerful machine-learning techniques to manipulate or 

generate visual and audio content with a high potential to deceive. AI-

powered deepfakes are already being used in everyday attacks such as fraud. 

In one widely publicized U.K. case, a victim received a phone call from what 

he thought was his boss instructing him to wire money to the bank account 

of a supplier in Hungary.313 The call and email that followed accurately 

replicated the mannerisms, accent, and diction of his employer.314 The 

“Synthesizing Obama” program in 2017 modified video footage of former 

President Barack Obama to depict him mouthing the words contained in a 

separate audio track.315 While this was an academic exercise, other such 

 

 311 See Ilja Moisejevs, Poisoning Attacks in Machine Learning, TOWARDS DATA SCI., (July 14, 2019), 

https://towardsdatascience.com/poisoning-attacks-on-machine-learning-1ff247c254db 

[https://perma.cc/839Z-MESS]; For a more technical discussion of poisoning, see, for example, Gan Sun 

et al., Data Poisoning Attacks on Federated Machine Learning, Vol. 14, No. 8, J. of Latex Class Files, 1 

(2015). 

 312 Deepfake, WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=Deepfake&oldid=1002384861 [https://perma.cc/B6LS-

MTCS]; see also Ian Sample, What Are Deepfakes and How Can You Spot Them?, GUARDIAN, 

https://www.theguardian.com/technology/2020/jan/13/what-are-deepfakes-and-how-can-you-spot-them 

[https://perma.cc/L6LU-DLHV]; Aseem Kishore, What Is a Deepfake and How Are They Made?, ONLINE 

TECH TIPS, (May 23, 2019), https://www.online-tech-tips.com/computer-tips/what-is-a-deepfake-and-

how-are-they-made [https://perma.cc/E2P2-642D]. 

 313 See Catherine Stupp, Fraudsters Used AI to Mimic CEO’s Voice in Unusual Cybercrime Case, 

WSJ, (Aug. 30, 2019, 12:52 PM), https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-ceos-voice-

in-unusual-cybercrime-case-11567157402 [https://perma.cc/9RF5-G72R]. 

 314 Rahul Kashyap, Are You Ready for the Age of Adversarial AI? Attackers Can Leverage Artificial 

Intelligence Too, FORBES, https://www.forbes.com/sites/forbestechcouncil/2020/01/09/are-you-ready-

for-the-age-of-adversarial-ai-attackers-can-leverage-artificial-intelligence-too/?sh=22337f3a4703 

[https://perma.cc/ZM8P-YLR7]. 

 315 Daniel Akst, The Researchers Who Synthesized Video of Barack Obama, WSJ, 

https://www.wsj.com/articles/the-researchers-who-synthesized-video-of-barack-obama-1500655962 

[https://perma.cc/L4MD-AZ6G]; For a copy of the research discussed in the WSJ article, see Supasorn 

Suwajanakorn et al., Synthesizing Obama: Learning Lip Synch from Video, 36 ACM TRANSAC. ON 

GRAPHICS (“SIGGRAPH 2017”) (2017); For a video describing how the synthesized video was prepared, 

see Supasorn Suwajanakorn et al., Synthesizing Obama: Learning Lip Sync from Audio; SIGGRAPH 

(2017), GRAIL, https://grail.cs.washington.edu/projects/AudioToObama [https://perma.cc/HXZ3-

T2J9]; For a more recent example of a deepfake video of Queen Elizabeth giving her annual Christmas 

speech, see Bruce Haring, Queen Elizabeth ‘Deepfake’ Message Jabs Prince Harry and Meghan, Prince 

Andrew, DEADLINE, https://deadline.com/2020/12/queen-elizabeth-deepfake-message-jabs-harry-

meghan-prince-andrew-1234661642 [https://perma.cc/MAG6-EG26]; Of course, the two Canadian 

authors of this paper take issue with the Queen’s jab at Canadians (“There are few things more hurtful 

than someone telling you they prefer the company of Canadians.”). Id. 
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adversarial efforts are not. In January 2018, a proprietary desktop application 

called FakeApp was launched by an anonymous Reddit user. 316 It allowed 

users to easily create and share videos with their faces swapped with their 

friends.317 Since then, FakeApp has been superseded by open-source 

alternatives such as faceswap.318 Other deepfake efforts that are less amusing 

involve the alteration or manipulation of video related to well-known public 

officials. These are now being used to sow distrust in public and government 

institutions. Current events underscore the danger of these types of AI. 

It is becoming increasingly difficult to distinguish material generated 

by AI from that generated by humans. In August 2020, a college student was 

able to use Generative Pre-trained Transformer 3 (“GPT-3”), one of the most 

powerful language-generating AI models to date, to create, in a matter of 

hours, a fake blog on productivity and self-help.319 Many people hit 

 

 316 See Dan Marino, FakeApp: Groundbreaking or Dangerous?, ARTEFACT, (Feb. 13, 2018), 

https://www.artefactmagazine.com/2018/02/13/fakeapp-groundbreaking-or-dangerous 

[https://perma.cc/K7R4-96HX]. To download FakeApp version 2.2.0, see FakeApp, MALAVIDA, 

https://www.malavida.com/en/soft/fakeapp/#gref [https://perma.cc/TSG7-XKDU]. For a discussion of 

another application (Zao) that allows users to add themselves into their favorite movies, see Ryan Gilbey, 

A ‘Deepfake’ App Will Make Us Film Stars – But Will We Regret Our Narcissism?, GUARDIAN, 

https://www.theguardian.com/technology/2019/sep/04/a-deep-fake-app-will-make-us-film-stars-but-

will-we-regret-our-narcissism [https://perma.cc/95QU-4Z8H]. 

 317 Marino, supra note 316. 

 318 Faceswap bills itself as “the leading free and Open Source multi-platform Deepfake Software.” 

Welcome, FACESWAP, https://faceswap.dev [https://perma.cc/YK2J-AQWW]. Faceswap can be 

downloaded here: Download, FACESWAP, https://faceswap.dev/download [https://perma.cc/YTF4-F2JT]. 

 319 See Karen Hao, A College Kid’s Fake AI-generated Blog Fooled Tens of Thousands. This Is How 

He Made It., MIT TECH. REV. (Aug. 14, 2020), 

https://www.technologyreview.com/2020/08/14/1006780/ai-gpt-3-fake-blog-reached-top-of-hacker-

news [https://perma.cc/8R5E-D7A7]. In July of 2020, one month earlier, another college student using 

GPT-3 had launched an AI startup that could write emails “automatically from a few fragmentary 

notes . . . by learning the way ‘a user thinks and responds’. . . .” Ken Schachter, Long Island Artificial 

Intelligence Startup Can Write Your Emails, NEWSDAY, (Sept. 21, 2020, 6:08 PM), 

https://www.newsday.com/business/technology/othersideai-artificial-intelligence-software-melville-

matt-shumer-1.49644292 [https://perma.cc/45RH-S3CD]. In November 2020, the New York Times 

asked GPT-3 to write one of its Modern Love columns by giving it a short prompt: “The following is a 

New York Times’s Modern Love Column about a woman named Frances, her husband Dean, and the 

unlikely story of how they first met.” In response, GPT-3 wrote the following: 

 

After my fiancé died, my mother told me to “get out there again.” She wanted me 

     to go to a singles bar. I told her I’d rather go to the dentist. 

 

    “Just once,” she said. “Just to see what it’s like.” 

 

     One day, early last year, I found myself driving to a singles bar in winter snow. I sat 

     in my car for 15 minutes, then drove away. The next day, I went back and sat in my 

     car for another 15 minutes. I did this for a couple of weeks, until I finally mustered 

     up the nerve to walk in. 
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“subscribe.” We can expect the appearance of more and more (truly) fake 

news. 

Even more horrifying, perhaps, is the recent retraction by one of the 

world’s most highly cited medical journals—The Lancet—of an article on 

Hydroxychloroquine (“HCQ”) that caused the World Health Organization 

and several Latin American nations to halt their trials of the medication for 

the treatment of COVID.320 The authors of the study withdrew the article 

 

     The place was mobbed. It was like one of those bad dreams where you show up for 

     a test without having studied. I tried to size up the situation. I was a short, thin 

     middle-aged woman in a sea of young, good-looking men. I didn’t see anyone I  

     wanted to meet. I decided to leave. 

 

     As I walked toward the door, a man walking toward me accidentally bumped into me. 

     “I’m sorry,” he said. We shook hands, and I introduced myself. He asked where I was 

     from, and I told him. . . . He was from a small town nearby. We talked for a while, and I 

     asked him to have a drink with me. 

 

     “I don’t drink,” he said. 

 

     I was so shocked, I dropped my purse and my keys and had to pick them up. I don’t 

     drink, either, but I would have had a drink with this man, this stranger. “That’s OK,” 

     I said. 

 

     “I don’t know,” he said, and he seemed a little uncomfortable. 

 

     “It’s not a test,” I said. “I don’t care if you drink.” 

 

     “Well, in that case, I’ll have a glass of water.” 

 

Cade Metz, When A.I. Falls in Love, N.Y. TIMES, (Nov. 24, 2020), 

https://www.nytimes.com/2020/11/24/science/artificial-intelligence-gpt3-writing-love.html 

[https://perma.cc/SH3W-SRRA]. For a discussion of what GPT-3 is, what it can do, and how it works, 

see Bernard Marr, What Is GPT-3 And Why Is It Revolutionizing Artificial Intelligence?, FORBES, (Oct. 

5, 2020, 12:21 AM), https://www.forbes.com/sites/bernardmarr/2020/10/05/what-is-gpt-3-and-why-is-it-

revolutionizing-artificial-intelligence/?sh=6a12d762481a [https://perma.cc/JJ4W-ZZ2W]. For a more 

technical discussion of GPT-3, see Tom B. Brown et al., Language Models Are Few-Shot Learners, 

arXiv2005.14165v4 [cs.CL] (July 22, 2020), https://arxiv.org/pdf/2005.14165.pdf 

[https://perma.cc/U592-GU8W]. For a less optimistic view of GPT-3, see Rob Toews, GPT-3 Is 

Amazing—And Overhyped, FORBES, (July 19, 2020, 6:56 PM), 

https://www.forbes.com/sites/robtoews/2020/07/19/gpt-3-is-amazingand-overhyped/?sh=4a59d1fb1b1c 

[https://perma.cc/UEE2-JZKL]; Tom Taulli, Turing Test At 70: Still Relevant For AI (Artificial 

Intelligence)?, FORBES, (Nov. 27, 2020, 12:59 PM), 

https://www.forbes.com/sites/tomtaulli/2020/11/27/turing-test-at-70-still-relevant-for-ai-artificial-

intelligence/?sh=660c340e250f [https://perma.cc/C6UJ-KQBD] (noting that if you ask a GPT-3 system 

how many eyes the sun has, it responds that there is one, and if you ask it who was the president of the 

U.S. in 1600, it responds “Queen Elizabeth I”). 

 320 See Sarah Boseley & Melissa Davey, Covid-19: Lancet Retracts Paper that Halted 

Hydroxychloroquine Trials, GUARDIAN (June 4, 2020, 3:43 PM), 

https://www.theguardian.com/world/2020/jun/04/covid-19-lancet-retracts-paper-that-halted-

hydroxychloroquine-trials [https://perma.cc/TXH5-LWD8]. 



NORTHWESTERN JOURNAL OF TECHNOLOGY AND INTELLECTUAL PROPERTY 

78 

because they determined that they could no longer vouch for the data 

obtained from a healthcare analytics company named Surgisphere.321 After 

the paper was published, concerns were raised about the veracity of the data 

and the analysis of same conducted by the corporation. Surgisphere claimed 

to have collected data from 15,000 coronavirus patients who received HCQ 

alone, or in combination with antibiotics, from 1,200 hospitals around the 

world.322 Subsequent investigations by The Guardian Australia, among 

others, revealed that the data was fake, when reporters contacted five 

Australian hospitals reported to have provided data and they denied it.323 

Moreover, the number of deaths reported in Australia due to coronavirus also 

did not match the numbers from the purported Australian database.324 

There have been a number of federal and state efforts to enact 

regulatory responses to the problems posed by deepfakes,325 but most have 

not yet been successful. On October 3, 2019, however, California Governor 

Newsom signed into law Assembly Bill Nos. 602 and 730, which 

respectively, provide individuals targeted by sexually explicit deepfake 

content made without their consent a cause of action against the content’s 

creator, and prohibit the distribution of malicious deepfake audio or visual 

media targeting a candidate running for public office within 60 days of their 

election326 Until better technology and more legislation emerge, the challenge 

of detecting deepfakes and addressing the mischief they may cause will fall 

in the hands of the U.S. courts. The remainder of this article will address the 

ways that lawyers and judges can test the veracity of the data used to fuel AI 

 

 321 Mandeep R. Mehra et al., Retraction—Hydroxychloroquine or Chloroquine with or Without a 

Macrolide for Treatment of COVID-19: A Multinational Registry Analysis, LANCET, (June 5, 2020), 

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31324-6/fulltext 

[https://perma.cc/9P8A-25XC]. 

 322 See Melissa Davey, Questions Raised over Hydroxychloroquine Study Which Caused WHO to 

Halt Trials for Covid-19, THE GUARDIAN, (July 1, 2020, 12:21 PM), 

https://www.theguardian.com/science/2020/may/28/questions-raised-over-hydroxychloroquine-study-

which-caused-who-to-halt-trials-for-covid-19 [https://perma.cc/7QGU-889A]; Medical Journal The 

Lancet Retracts its HCQ Article Based on Fake Data from a Dubious Company, Authors Say they Cannot 

Vouch for Data’s Authenticity, OPINDIA, (June 5, 2020), https://www.opindia.com/2020/06/lancet-

retracts-article-study-hydroxychloroquine-trials-fake-data-surgisphere-who-clinical-trials-chicago-

company [https://perma.cc/338G-KRRC]. 

 323 See OPINDIA, supra note 322. 

 324 See id. 

 325 See Matthew F. Ferraro, Deepfake Legislation: A Nationwide Survey—State and Federal 

Lawmakers Consider Legislation to Regulate Manipulated Media, WILMERHALE CLIENT ALERT (Sept. 

25, 2019), https://www.wilmerhale.com/en/insights/client-alerts/20190925-deepfake-legislation-a-

nationwide-survey [https://perma.cc/5DCY-M6P9]. 

 326 See K.C. Halm et al., Two New California Laws Tackle Deepfake Videos in Politics and Porn, 

DAVIS WRIGHT TREMAINE LLP: ARTIFICIAL INTELLIGENCE LAW ADVISOR (Oct. 11, 2019), 

https://www.dwt.com/blogs/artificial-intelligence-law-advisor/2019/10/california-deepfakes-law 

[https://perma.cc/U95R-G66Q]. 
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tools, the bona fides of the tools themselves, and the output of such tools 

when they are presented in court as evidence. 

VI.    ESTABLISHING VALIDITY AND RELIABILITY 

A.    Testimony, Expert Testimony, or Technology? 

Because AI employs technology to emulate or exceed human cognitive 

ability, the question arises as to whether evidence gleaned from AI should 

be judged by the standard of direct witness testimony, expert witness 

testimony, or measurement using established technology. 

Consider, for example, a smart digital assistant that “listens” to 

everything that goes on in a home, an automobile, or within “earshot” of a 

mobile phone. Arguably, the digital assistant is a direct witness to what it 

hears. At the same time, the digital assistant may employ sophisticated 

technology like voice recognition to draw conclusions regarding the identity 

of the speaker, their tone of voice, and the words that are spoken. It may also 

act as a verbatim recording device, capturing sound, time, global position, 

speed, and motion, and perhaps video. Some or all of this information may 

be stored in the device or transmitted to the cloud where it may be retrieved 

even if the device is lost or destroyed.327 

When author Cormack’s credit card was declined in Australia, he was 

sent the following voicemail transcript: 

(800) 466-7295 4 Jul 2014, 9:15 am 

Yeah. This is an urgent call for Gordon. Cormac, yum the T. V. Canada 

Trust Loss Prevention center. This is not a telemarketing call. We would 

like to verify some recent activity on your T E D U. S. Dollar visa card, 

ending in. 8 Yeah, 0 Your yeah 1. Whether protection and security of 

your T V credit card account is very important that we speak to you. 

Please call us toll free at 1(800) 466-7295.  You may call us back 24 

hours a day, seven days a week. Yeah, the number again is 1(800) 466-

7295. Thank you for choosing P D, Canada Trust goodbye. 

This message was incorrectly marked spam and never delivered to 

Cormack’s email and was discovered only when Cormack telephoned a bank 

representative, who told him that a voice message had been left for him. The 

effort to find this message resulted in the serendipitous discovery of two 

other important messages that had also been blocked by the spam filter: 

 

 327 See, e.g., Anthony Cuthbertson, Amazon Ordered to Give Alexa Evidence in Double Murder 

Case, INDEPENDENT (Nov. 14, 2018), https://www.independent.co.uk/life-style/gadgets-and-

tech/news/amazon-echo-alexa-evidence-murder-case-a8633551.html [https://perma.cc/U9TR-M4RA]. 
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+1 XXX-XXX-XXXX 10 Jun 2014, 11:11 am 

Yeah, Hi. My name is calling. I’m calling with the Canada Revenue  

Agency, This message is for Gordon have a question regarding some self-

employed earnings from U 2013 tax returns. Please call me back. Toll 

free number is 1(XXX) XXX-XXXX (XXX) XXX-XXXX. Thank you. 

Bye. (Phone numbers redacted). 

 

+1 XXX-XXX-XXXX 18 Jun 2014, 10:00 am 

Hi, My name is Clint calling with the Canada Revenue Agency doing a 

follow up on the message I left on June 10th. Certain court and to the 

questions and some self employed or drinks from the 2013 tax. Please 

give a call back. Toll free number is 1(XXX) XXX-XXXX (XXX) XXX 

XXX. Thank you. (Phone numbers redacted.) 

 

While these communications played no role in any legal controversy, it 

is easy to imagine a situation in which similar communications could have. 

Are the transcripts genuine? Are they accurate? Were they in fact blocked 

by a spam filter? Did the bank, the revenue agent, the spam filter, and the 

intended recipient exercise reasonable diligence to ensure that the 

communications were successful? Should the recipient, having read the 

transcript, be deemed to have been notified of its content? Should he have 

assumed that they were real rather than a scam or phishing attack?328 

Establishing the provenance of the transcript involves several factors: 

(i) whether a call was really placed from the specified phone number to the 

recipient at the specified time; (ii) what voice recognition system was used 

to produce the transcript; (iii) what version and configuration was used, and 

how was it trained; and (iv) whether the proffered text is an accurate 

reproduction of the transcript? 

Accuracy does not mean perfection. Clearly there are errors in each of 

the examples. The name of the bank is T.D. [Canada Trust] not T.V. or 

T.E.D. or P.D. The revenue agent’s name was neither “calling” nor “Clint.” 

“Self employed or drinks” presumably should be “self-employed earnings.” 

 

 328 A phishing attack is a “fraudulent attempt to obtain sensitive information or data, such as 

usernames, passwords and credit card details or other sensitive details, by impersonating oneself as a 

trustworthy entity in a digital communication. Typically carried out by email spoofing, instant messaging, 

and text messaging, phishing often directs users to enter personal information at a fake website which 

matches the look and feel of the legitimate site. Phishing is an example of social engineering techniques 

used to deceive users. Users are lured by communications purporting to be from trusted parties such as 

social networking websites, auction sites, banks, mails/messages from friends or colleagues/executives, 

online payment systems or IT administrators.” Phishing, WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=Phishing&oldid=1002208250 [https://perma.cc/6X4X-

386E]. 
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There are several spelling mistakes. Notwithstanding these errors, it might 

be argued that the transcripts convey accurately enough the substance of the 

voicemail messages, and also the spoken telephone numbers, which were 

correctly transcribed. 

Determining whether a transcript is accurate enough is fraught with 

challenges: Precisely defining and quantifying what is meant by “accuracy,” 

estimating the accuracy of a particular transcript, determining what threshold 

of accuracy is sufficient, and determining the reliability with which a 

transcription tool meets this threshold. 

As a term of art, the accuracy of a transcript typically refers to the 

fraction or percentage of words that are correctly transcribed. To evaluate 

accuracy, according to this definition, it is necessary to define, in turn, what 

is meant by a word, and what is meant for that word to be correctly translated. 

Is “T.D.” one word or two, and is its correct spelling “T.D.” or “TD”? How 

is the spurious E in “T E D” to be counted? Is the telephone number 1(800) 

466-7295 a word? It was probably spoken as ten words: “one eight hundred 

four six six seven two nine five.” Are homonyms or sound-alike words 

correct or incorrect? 

Any quantitative assessment of accuracy depends on such arbitrary but 

necessary choices. For a reasonable set of choices, we might determine that 

the first voicemail message contained 120 words, of which 100 were 

correctly transcribed, or 83% accuracy. Error—the complement of 

accuracy—is 17%, or one in six. It can be argued that this transcript could 

be considered accurate enough for many purposes. 

But this is not to say that the transcription tool always achieves 83% 

accuracy, or that all transcripts achieving 83% accuracy are sufficiently 

accurate to assume the recipient has knowledge. In the first transcript, TD 

was consistently misspelled, but arguably, the words “Canada Trust” 

provided essential context. Imagine if the caller had referred to the bank as 

simply TD—would the recipient be able to determine that the call was not 

just another phishing attempt? Would the accuracy be considered 

acceptable? 

The error rate in this transcript was 17%, or one-in-six words. Imagine 

a different transcription in which one in six of the digits of the telephone 

number were transcribed incorrectly. Would such accuracy be considered 

acceptable? 

Admittedly, these are contrived examples, and generally, we find that 

measured accuracy and acceptable accuracy are well correlated. Researchers 

and developers take advantage of this correlation to evaluate and improve 

their AI systems, under the assumption that improving measured accuracy 

tends to improve the reliability with which an AI system achieves its 
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intended purpose: here, a transcript sufficient to convey the substance of the 

message. 

B.    Benchmarks and Goodhart’s Law 

In 1975, Charles Goodhart, acting as a member of the Bank of 

England’s Policy Committee, observed that “any observed statistical 

regularity will tend to collapse once pressure is placed upon it for control 

purposes.”329 In other words, when a statistical measure of effectiveness, 

accuracy, or reliability is used as a target or acceptance criterion, it ceases to 

be a valid measure. The reason for this effect is that, although the measure 

may be apt if the measurement is conducted independent of what is being 

measured, it is no longer independent and therefore, no longer apt, if the 

thing being measured is influenced by the measurement.330 In more common 

terms, the purpose of a college examination is defeated if the examinees are 

aware of the questions beforehand. 

Benchmarks and statistical measures are very useful tools for 

monitoring and improving the effectiveness of AI technologies. But if these 

benchmarks are public or used repeatedly, technologies will evolve—

whether intentionally or not—to optimize their performance with respect to 

the benchmark and the chosen measure of success, not the general problem 

for which the benchmark is intended to be a representative example, or the 

underlying property that the measure was designed to estimate. 

 

 329 David Manheim & Scott Garrabrant, Categorizing Variants of Goodhart’s Law, 

https://arxiv.org/pdf/1803.04585.pdf [https://perma.cc/2LCS-996D]. See also Goodhart’s law, 

WIKIPEDIA, https://en.wikipedia.org/w/index.php?title=Goodhart%27s_law&oldid=999730673 

[https://perma.cc/J3NS-Y89X]. 

 330 A famous example of Goodhart’s law is the “Cobra effect.” See Cedric Chin, The Four Flavors 

of Goodhart’s Law, HOLISTICS BLOG, https://www.holistics.io/blog/four-types-goodharts-law 

[https://perma.cc/ZF5X-AK73]. So, the story goes, the British Colonial Government in India was 

becoming concerned about the increasing number of venomous cobras in Delhi, so it began offering a 

bounty for each dead cobra that was delivered. Id. Initially, this was a successful strategy; locals brought 

in large numbers of the slaughtered snakes. Id. But over time, enterprising individuals started to breed 

cobras in order to kill them for the supplemental income. Id. When the government abandoned the bounty, 

the cobra breeders released their cobras into the wild and Delhi experienced a surge in its snake 

population. Id. Similarly, in 1902, the French Colonial government in Hanoi created a bounty program to 

reduce the rat population. Cobra effect, WIKIPEDIA, 

https://en.wikipedia.org/w/index.php?title=Cobra_effect&oldid=1002053645 [https://perma.cc/NP3X-

MPN7]. To collect the bounty, locals needed to provide the severed tail of a rat. Id. Shortly thereafter, 

Vietnamese officials began to notice an increasing number of rats running around the city without tails. 

Id. It turned out that the rat catchers would capture the rats, sever their tails, and release them back into 

the sewers so they would procreate, produce more rats, and therefore generate more revenue. Id. So, too, 

when a court indicates that claims and defenses must be based on “evidence,” this can lead to pressures 

and incentives to massage and manipulate such “evidence,” either by optimizing for a metric that defeats 

the metric’s goal or that reduces its predictive effect. See Chin, supra note 330. This has also been referred 

to as “Adversarial Goodhart.” Id. 
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This issue was brought to the fore recently with respect to vehicle 

emissions testing. Given a standard evaluation protocol and a measure of 

success, the systems learn (or are taught) to behave differently when they are 

being tested, and to optimize not actual emissions, but whatever the test 

instruments register.331 

In an ideal world, the accuracy and reliability of AI tools should be 

established by independent testing. Even so, it is necessary to consider 

carefully whether the results from such testing actually transfer to the 

problem at hand. In practice, progress in AI has occurred so quickly that 

often such independent testing has not yet occurred. Some AI tools have been 

rigorously tested by their developers; others, not so much. Some vendors 

disclose the nature of the testing they have conducted, but rarely do they 

disclose detailed protocols and results. Should they be required to do so, as 

are the purveyors of drugs, medical devices, and safety-critical equipment? 

Until such time as requirements like these are implemented, unvetted AI 

technologies will continue to be deployed, and it will be necessary to 

estimate their effectiveness and reliability on an ad-hoc basis. It would be 

unwise to consider such ad-hoc determinations as judicial notice, absent 

rigorous independent testing. 

As an example, consider the voice transcription results shown above. 

There is reason to believe that the major corporation providing the 

transcription service has tested its software and has a reputational (if not 

economic) incentive for it to work well. And, perhaps, it works well enough 

for its intended purpose in this particular example. That transcript might even 

be offered in evidence to demonstrate that Cormack had notice, provided its 

provenance could be established. But the authors would not suggest that all 

transcription software, or indeed all transcriptions provided by this particular 

company, are necessarily accurate or should automatically be admitted as 

evidence. 

As particular AI tools mature, the standards for their acceptance as 

evidence should tighten, as should the criteria to be used in assessing the 

weight of the evidence provided by them. 

 

 331 See, e.g., Benjamin Hulac, Volkswagen Uses Software to Fool EPA Pollution Tests, SCI. AM. 

(Sept. 21, 2015), https://www.scientificamerican.com/article/volkswagen-uses-software-to-fool-epa-

pollution-tests [https://perma.cc/HN5J-463L]; Volkswagen emissions scandal, WIKIPEDIA 

https://en.wikipedia.org/w/index.php?title=Volkswagen_emissions_scandal&oldid=1000735588 

[https://perma.cc/BD5K-62TY]. 
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VII.    EVIDENTIARY PRINCIPLES THAT SHOULD BE CONSIDERED IN 

EVALUATING THE ADMISSIBILITY OF AI EVIDENCE IN CIVIL AND 

CRIMINAL TRIALS 

 

A.    Adequacy of the Federal Rules of Evidence in Addressing the 

Admissibility of AI Evidence 

As the above discussion illustrates, understanding what AI is, and how 

it functions in the many different applications in which it is used, is a 

complex and challenging undertaking. This complexity is no less present 

when lawyers and judges are faced with the task of determining how to 

evaluate the admissibility of AI evidence when it is offered to support and 

defend claims in civil and criminal cases. To date, there have been few, if 

any, court decisions squarely addressing this topic, and the cases that have 

referenced AI evidence often have done so in a cursory or tangential 

manner.332 Th challenge is compounded by the fact that the Federal Rules of 

Evidence333 are amended infrequently, and the process of amendment is slow, 

because it is governed by the procedural requirements of the Rules Enabling 

Act.334 In contrast, technology, and especially AI technology, changes at 

near-breakneck speed, and often is incorporated into routine use by 

individuals, organizations, corporations, and governments long before it is 

the subject of evidentiary scrutiny in a particular case. For this reason, it is 

 

 332 See, e.g., Wisconsin v. Loomis, supra note 145. The Loomis Court discussed AI technology in 

the context of due process challenges to its use during a sentencing, where the rules of evidence are 

inapplicable. See, e.g., FED. R. EVID. 1101(d)(3). It therefore provides no real help in evaluating the 

standards to be used when AI evidence is being offered during trials where evidence rules do apply. 

 333 Every state in the United States has adopted its own rules of evidence, some of which are identical 

or nearly identical to the Federal Rules of Evidence, and some of which differ in significant respects. 

Nevertheless, the evidentiary concepts that govern admissibility of AI evidence are fundamental and are 

found in all compilations of the rules of evidence. Further, the Federal Rules of Evidence are frequently 

cited as persuasive authority even in states that have evidence codes that differ from the Federal Rules. 

For that reason, the authors will refer to the Federal Rules of Evidence in this paper because of their 

national scope and their influence on state codifications of the rules of evidence. 

 334 See 28 U.S.C. §§ 2072–2077. Section 2073 of the Rules Enabling Act (the “Enabling Act”) 

authorizes the Judicial Conference of the United States Courts to appoint a standing committee on rules 

of practice, procedure, and evidence, and individual committees for the rules of civil, criminal, appellate, 

and bankruptcy procedure, and the rules of evidence. The meetings of the standing committee, as well as 

those of the individual committees, are open to the public, minutes are kept of their proceedings, and there 

must be sufficient advance public notice of committee meetings. When one of the individual committees 

recommends a new rule (or amendment) it must prepare a proposed rule (or amendment) and explanatory 

note. The standing committee reviews and approves proposed new rule (or amendment), and it then is 

transmitted to the U.S. Supreme Court for review and approval. Section 2074 of the Enabling Act requires 

the Supreme Court to transmit the proposed new rule (or amendment) to Congress not later than May 1 

of the year in which a proposed new rule (or amendment) is to become effective. The proposed new rule 

(or amendment) then takes effect on December 1 of that year, unless revised or rejected by Congress. See 

id. 
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not an unfair question to ask whether the Federal Rules of Evidence provide 

an adequate analytical framework to evaluate whether AI evidence ought to 

be admitted in court cases.335 

But the Federal Rules of Evidence are nothing if not resilient, and they 

are designed to be used in a manner that is not static or inflexible. Rule 102 

provides: “These rules should be construed so as to administer every 

proceeding fairly, eliminating unjustifiable expense and delay, and promote 

the development of evidence law, to the end of ascertaining the truth and 

securing a just determination.” (emphasis added).336 As this paper argues, the 

existing Federal Rules of Evidence are adequate for the task of evaluating AI 

evidence, provided they are applied flexibly. 

We will start with the rules that define what relevant evidence is, then 

discuss the rules that govern how to authenticate evidence, and, finally, focus 

on the rules that govern how to admit scientific, technical, and specialized 

evidence. In the process, we will focus primarily on the evidentiary issues 

associated with relevance and authenticity, the two areas that create most of 

the evidentiary challenges for admitting AI evidence. Other evidence 

doctrines, such as the hearsay rule,337 and the original writing rule,338 can be 

encountered, but these rules present less of a concern than authenticity. 

Why? Because the focus of the hearsay rule is intentionally assertive 

statements made by human declarants,339 and AI applications, by their very 

nature, involve machine-generated output.340 While the evidence may, and 

 

 335 See Lorraine v. Markel Am. Ins. Co., 241 F.R.D. 534, 542–43 (D. Md. 2007) (courts have rejected 

arguments calling for abandoning the existing rules of evidence and adopting more demanding rules to 

govern admissibility of electronic evidence). See also Michael M. Martin, Stephen A. Salzburg, and 

Daniel J. Capra, 5 Federal Rules of Evidence Manual § 901.02[9], at 901–19 (12th ed. 2019) (noting that 

the “basic authentication principles . . . [of the Fed. R. Evid.] have been found to be sufficiently adaptable 

to all forms of electronic evidence.”). 

 336 FED. R. EVID. 102. 

 337 See FED. R. EVID. 801–07. 

 338 See FED. R. EVID. 1001–08. 

 339 See FED. R. EVID. 801(a)–(c). 

 340 “Because human design, input, and operation are integral to a machine’s credibility, some courts 

and scholars have reasoned that a human is the true ‘declarant’ of any machine conveyance. But while a 

designer or operator might be partially epistemically or morally responsible for a machine’s statements, 

the human is not the sole source of the claim. . . . The machine is influenced by others but is still a source 

whose credibility is at issue.” Andrea Roth, Machine Testimony, 127 Yale L.J. 1972, 1978–79 (2017). 

While it may be a useful analogy to compare the factually assertive output of an AI algorithm as a 

“statement,” akin to one made by a human declarant, for purposes of stressing the importance of not 

accepting algorithmic output without critical analysis, this analogy has its limits. First, algorithms, unlike 

human beings, cannot intentionally “lie,” they have no “demeanor” that a jury can evaluate for clues of 

deception or candor, and they cannot be subjected to an “oath” to impress upon them the duty to be 

truthful. Therefore, anthropomorphically characterizing the results of AI programs as having potential 

“credibility” problems adds little to what lawyers and judges must consider in deciding whether AI 

evidence may be considered by a jury. At its root, the hearsay rule is intended to promote the reliability 
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often does, take the form of an express or implied factual assertion (e.g., “this 

is the photo of the person depicted in the surveillance video”; “this is the 

sector of the city that is likely to have the greatest potential for criminal 

activity on a particular date and time”; “this job applicant is most qualified 

for the vacancy being filled”), and may be offered for its substantive truth, 

the source is not a human declarant, therefore it is not properly regarded as 

hearsay.341 Rather, the key issue is authenticity—how accurately does the AI 

system that generated the evidence produce the result that its proponent 

claims it does. Similarly, the original writing rule imposes a requirement that 

proof of the content of writings, recordings, and photographs must be made 

by introducing an original or duplicate original,342 but those terms are defined 

interchangeably, and broadly, so they are seldom difficult to comply with, 

unless a witness is called who merely describes what he or she observed as 

the output of the AI system, instead of introducing a copy. This seldom 

occurs for the simple reason that having a human describe the contents of the 

output of an AI system that produces a written, recorded, or photographic 

result robs it of most of the weight that the evidence would have if the jury 

were shown the output itself (once properly authenticated). 

B.    Relevance 

Federal Rule of Evidence 401 defines relevance. It states: “Evidence is 

relevant if: (a) it has any tendency to make a fact more or less probable than 

 

of testimonial evidence, and the many hearsay exceptions all share a common denominator of being 

sufficiently reliable and accurate to allow the jury to consider them without the need to have the human 

declarant appear before them to assess credibility. If validity and reliability are the common goals, then, 

at least for AI, it is much more usefully analyzed under the lens of the authenticity rules, and the rules 

governing admissibility of evidence regarding experts, than by strained analogies to the hearsay rule. 

 341 See, e.g., U.S. v. Wallace, 753 F.3d 671, 675 (7th Cir. 2014) (rejecting confrontation-clause 

challenge to the admissibility of a video recording showing an exchange of drugs between two people 

because there was no human declarant to be cross examined and there was no showing that the conduct 

involved was intended by the participants to be an assertion, therefore there was no hearsay “statement,” 

as contemplated by Fed. R. Evid. 801(a), and no “declarant,” as contemplated by Fed. R. Evid. 801(b)); 

U.S. v. Lizarraga-Tirado, 789 F. 3d 1107, 1109-10 (9th Cir. 2015) (rejecting hearsay challenge to a 

satellite image and accompanying GPS coordinates. The Court found that the satellite image, exclusive 

of any labels and markers, was not hearsay because it contained no “assertion,” as Fed. R. Evid. 801(a) 

requires. Similarly, because the geolocation coordinates of a particular point on the image was identified 

by a “tack,” it was not hearsay since it was automatically generated by the Google Earth program. The 

Court held that “[a] tack placed by the Google Earth program and automatically labeled with the GPS 

coordinates isn’t hearsay,” because it contains no “statements” made by a “human” declarant.). These 

same analyses apply with equal force to the content and output of AI systems. See also 31 Charles A. 

Wright and Victor J. Gold, Federal Practice and Procedure: Evidence §7103, at 4 (Supp. 2018) (“While 

machine produced evidence like a readout from a global positioning system raises an issue under Rule 

901, it does not also raise a hearsay issue because such evidence does not contain the statement of a 

person.”). 

 342 See FED R. EVID. 1001(e) (defining duplicates and duplicate originals), 1002 (setting forth the 

substantive rule), and 1004–1007 (setting forth exceptions to the rule). 
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it would be without the evidence; and (b) the fact is of consequence in 

determining the action.” This is a relatively low bar to admitting evidence, 

because even evidence that has slight tendency to prove or disprove facts that 

are important to resolve a civil or criminal case meet this standard.343 

Examined in isolation, it could be argued that AI evidence that has not 

adequately been examined to determine its validity and reliability still has 

some tendency to prove a disputed issue. Rule 401 does not require 

perfection, only a tendency to prove or disprove. 

But Rule 401 must not be read in isolation; it must be considered in 

conjunction with its evidentiary neighbors, Rules 402 and 403. Rule 402 

states: “Relevant evidence is admissible unless any of the following provides 

otherwise: the United States Constitution; a federal statute; these rules [of 

evidence]; or other rules prescribed by the Supreme Court. Irrelevant 

evidence is not admissible.”344 In essence, Rule 402 creates a presumption 

that relevant evidence is admissible, even if it is only minimally probative, 

unless other rules of evidence or sources of law require its exclusion. But, 

while the first part of Rule 402 is flexible, the second part is immutable: 

Irrelevant evidence is never admissible. 

Rounding out Rules 401 and 402 is Rule 403, which is designed to level 

the evidentiary playing field. It provides: “The court may exclude relevant 

evidence if its probative value is substantially outweighed by a danger of one 

or more of the following: unfair prejudice, confusing the issues, misleading 

the jury, undue delay, wasting time or needlessly presenting cumulative 

evidence.”345 As it relates to the admissibility of AI evidence, Rule 403 has 

three important features. First, it establishes a “balancing test” for 

determining whether relevant evidence may be considered by the judge or 

jury. This scale “tilts” towards admissibility of relevant evidence.346 It is 

inadmissible only if its probative value (i.e., its ability to prove or disprove 

important facts presented in a case) is substantially outweighed by the 

adverse consequences listed in the rule. It is not enough that relevant 

evidence will be prejudicial to the party against which it is introduced—after 

all, all evidence offered by a plaintiff against a defendant is intended to be 

 

 343 See, e.g., MICHAEL M. MARTIN ET AL., 1 FEDERAL RULES OF EVIDENCE MANUAL § 402.02[1] 

401, 406–7 (12th ed. 2019) (“To be relevant it is enough that the evidence has a tendency to make a 

consequential fact even the least bit more probable or less probable than it would be without the evidence. 

The question of whether relevance is thus different from whether evidence is sufficient to prove a point. 

. . . It should be emphasized that ‘any tendency’ is enough. The fact that the evidence is of weak probative 

value does not make it irrelevant.”) (emphasis in original)). 

 344 FED. R. EVID. 402. 

 345 FED. R. EVID. 403. 

 346 See, e.g., United States v. Terzado-Madruga, 897 F. 2d 1099, 1117 (11th Cir. 1990) (The 

balancing test of Fed. R. Evid. 403 “should be struck in favor of admissibility.”). 
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prejudicial in the sense that it is offered to show that the defendant is liable. 

It is excludable only if its prejudice is unfair to that party.347 Similarly, Rule 

403 will tolerate a degree of confusion on the part of the judge or jury that 

must evaluate the evidence, even if it tends to mislead them, provided that 

these adverse consequences do not substantially outweigh the tendency of 

the evidence to prove important facts in the case. But even though the 

balancing in Rule 403 favors admissibility, the fact that the rule clearly 

establishes that judges must consider unfairness, be aware that confusion 

may result, and be careful to discern whether the jury may be misled, is 

extremely important, especially when applied to the admissibility of AI 

evidence. After all, the court cannot evaluate technical evidence for 

prejudice, confusion, or assess whether it misleads without understanding 

how it works. And judges cannot assess whether a jury will be misled or 

confused by AI evidence unless they have an appreciation for whether the 

AI application meets acceptable standards of validity and reliability, which 

may differ depending on what the evidence is being offered to prove, and the 

adverse consequences flowing from allowing a jury composed of lay persons 

to consider that evidence in reaching its verdict. 

Second, Rule 403 makes it clear that it is the trial judge who is charged 

with the responsibility of reviewing the evidence in the first instance to 

determine whether the jury may hear it. This obligation flows from another 

rule of evidence, Rule 104(a), which states: “The court must decide any 

preliminary question about whether a witness is qualified, a privilege exists, 

or evidence is admissible. In so deciding, the court is not bound by evidence 

rules, except those on privilege.”348 This is all well and good, but implicit in 

this delegation of responsibility is the notion that the judge must have the 

tools to make this preliminary determination. The hallmark feature of the 

American justice system is that it is an adversary process. This means that it 

is the responsibility of the parties, not the judge, to develop and present the 

factual evidence that will be offered to the jury for its consideration. When 

it comes to technical evidence like AI, the judge often is in a battle of wits 

unarmed, as the court is not involved in the investigation of the facts 

 

 347 See United States v. Guzman-Montanez, 756 F.3d 1, 7 (1st Cir. 2014) (“[T]he law shields a 

defendant against unfair prejudice not against all prejudice. ‘[A]ll evidence is meant to be prejudicial; it 

is only unfair prejudice which must be avoided.’”); Martin, supra note 343, § 403.02[3], at 403,410–11 

(“Evidence is not ‘prejudicial’ merely because it is harmful to the adversary. After all, if it didn’t harm 

the adversary, it wouldn’t be relevant in the first place. Rather, the rule refers to the negative consequences 

of ‘unfair’ prejudice. Unfair prejudice is that which could lead the jury to make an emotional or irrational 

decision, or to use the evidence in a manner not permitted by the rules of evidence.”). 

 348 FED. R. EVID. 104(a). The party introducing the evidence bears the burden of proving that the 

offered evidence meets the requirements of Rule 104(a) by a preponderance of the evidence. See Martin, 

supra note 343 § 104.02[9], at 104–12. 
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underlying a case, or the marshalling of evidence to prove or disprove it. 

What this means is that it is the obligation of lawyers who intend to offer (or 

challenge) AI evidence to do the hard work necessary to show the judge how 

the AI system works (i.e., produced its output), why the evidence will 

enlighten not confuse, and promote a just outcome, not one that is unfair. To 

do this, they must understand the AI system and its output themselves, and 

that can be a challenge for lawyers who more often than not are generalists, 

not specialists in the many scientific and technical disciplines that underlie 

AI systems and their related evidence. 

For their part, the trial judge must raise with the parties well in advance 

of the trial the question of whether they intend to offer AI or similarly 

technical evidence at trial, and as part of the pretrial scheduling process, 

impose deadlines for disclosing an intention to introduce such evidence, and 

for challenging its admissibility sufficiently far in advance of trial to allow 

the judge to have a hearing (which may require the testimony of witnesses). 

Determinations about whether AI evidence meets adequate thresholds of 

validity and reliability sufficient for it to be considered by the jury do not 

lend themselves to last minute, on-the-fly assessments, and should not be 

attempted or allowed in the middle of a trial itself. 

Finally, it should be obvious that a judge cannot make the 

determinations required by Rules 401 through 403 unless the party offering 

the AI evidence is prepared to disclose underlying information concerning, 

for example, the training data and the development and operation of the AI 

system sufficient to allow the opposing party (and the judge) to evaluate it, 

and the party against whom the AI evidence will be offered to decide whether 

and how to challenge it. If a party intends to rely on facts that are the product 

of AI applications in a civil or criminal trial, they should not be permitted to 

withhold from the party against whom that evidence will be offered the 

information necessary to determine the validity (i.e., the degree of accuracy 

with which the AI tool measures what it purports to measure), and the 

reliability (i.e., the consistency with which the AI algorithm correctly 

measures what it purports to measure), of the AI evidence. If they are 

prohibited from doing so by the claims of proprietary information or trade 

secrets raised by the company that developed the AI application, the trial 

judge should give the proponent of the AI evidence a choice: disclose the 

underlying evidence (under the provisions of an appropriate protective 

order), or otherwise demonstrate its validity and reliability. If the proponent 

is unwilling or unable to do so, they should be precluded from introducing 

the evidence at trial.349 

 

 349 In addition to evidentiary concerns associated with admitting AI evidence against a party that has 

been denied sufficient information with which to assess its validity and reliability, this can also raise 
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The long and the short of it is not hard to grasp. Invalid or unreliable AI 

systems produce results that have insufficient tendency to prove or disprove 

disputed facts in a trial. Neither the trial judge nor the party against whom 

AI evidence is offered should be required to accept at face value the 

unproven claims of the proponent of the evidence that it is valid and reliable. 

This takes us to the next important area where the Federal Rules of Evidence 

provide guidance: the process of authentication. 

C.    Authentication of AI Evidence 

Federal Rule of Evidence 901(a) sets forth in plain terms what is meant 

by the requirement that AI evidence must be authenticated in order to be 

considered by the jury. It states: “To satisfy the requirement of 

authenticating . . . an item of evidence, the proponent must produce evidence 

sufficient to support a finding that the item is what the proponent claims it 

is.”350 Rule 901(b) then lists ten non-exclusive ways in which a party can 

 

procedural due process issues if the proponent of the evidence is a government entity. In Houston Fed. of 

Teachers, Local 2415 v. Houston Ind. Schl. Dist., supra note 98, the Court denied the school district’s 

motion for summary judgment on the plaintiffs’ procedural due process claims largely because the 

plaintiff school teachers had been “denied access to the computer algorithms and data necessary to verify 

the accuracy of their [teacher evaluation] scores.” Id. at 1177. The school district used an AI-based 

evaluation system developed by a third-party vendor to evaluate teacher performance in order to 

determine whether to renew the employment of public school teachers. Id. The vendor claimed that the 

algorithms and related software were trade secrets and refused to allow the plaintiffs the ability to test 

their validity. Id. The Court concluded that the inability of the teachers to ensure the correct calculation 

of their evaluation scores exposed them to the risk of “mistaken deprivation” of their jobs and refused to 

grant summary judgment to the school district on the teachers’ procedural due process claims. Id. at 1180. 

Similarly, in a more recent opinion, the Superior Court of New Jersey, Appellate Division, rejected claims 

of trade-secret protection as a bar to producing source code to permit the defendant in a criminal case to 

evaluate the validity and reliability of the State’s DNA analysis software used to prove that the 

defendant’s DNA was present, reversing the decision of the trial judge that blocked the disclosure of the 

source code. The Court held that “[w]ithout . . . [access to the source code] defendant is relegated to 

blindly accepting the company’s assertions as to its reliability. And, importantly, the judge would be 

unable to reach an informed reliability determination . . . as part of his gatekeeping function. Hiding the 

source code is not the answer. The solution is producing it under a protective order.” State v. Pickett, 466 

N.J. Super. 270, 246 A.3d 279 (App. Div. 2021) (emphasis added)). Compare these two cases with the 

decision in Wisconsin v. Loomis, supra note 145, where the Wisconsin Supreme Court rejected due 

process challenges to the use of the AI-powered COMPAS system for evaluating defendant recidivism 

risk for purposes of sentencing defendants. Id. at 271 ¶86. In Loomis, the Court was unpersuaded that the 

defendant had been denied access to information necessary to evaluate the validity of the COMPAS 

software, on similar claims of proprietary trade secrets. Id. at 257–64 ¶¶46–65. In light of the discussion 

in this article, it is our view that the Loomis Court unwisely dismissed the defendant’s legitimate 

challenges to the validity and reliability of the COMPAS system, while the Houston Fed. of Teachers and 

Pickett Courts correctly recognized the inherent unfairness associated with allowing claims of trade 

secrets to preclude litigants from testing the validity and reliability of critical AI evidence that is being 

offered against them. In Pickett, the Court cogently explained why the trial judge, as well as the party 

against whom the electronic evidence will be offered, needs this information to rule on its accuracy. 

 350 FED. R. EVID. 901(a). 
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accomplish this task.351 The examples that most readily lend themselves to 

authenticating AI evidence are: Rule 901(b)(1) (testimony of a witness with 

knowledge that an item is what it is claimed to be); and Rule 901(b)(9) 

(evidence describing a process or system and showing that it produces an 

accurate result). 

When authenticating AI evidence using Rule 901(b)(1), the testimony 

of the witness called to accomplish this task must comply with other rules of 

evidence. For example, Rule 602 requires that the authenticating witness 

have personal knowledge of how the AI technology functions.352 It states: “A 

witness may testify to a matter only if evidence is introduced sufficient to 

support a finding that the witness has personal knowledge of the matter. 

Evidence to prove personal knowledge may consist of the witness’s own 

testimony. This rule does not apply to a witness’s expert testimony under 

Rule 703.” 353 

There are some important features of Rule 602 that tend to be 

overlooked by some lawyers and judges. There is an understandable 

tendency to call the fewest number of witnesses as possible to authenticate 

evidence. When a single person possesses all the knowledge needed to do 

so, then that is all that is required. But if this paper has shown anything, it is 

that AI applications seldom are the product of a single person possessing 

personal knowledge of all the facts that are needed to demonstrate that the 

technology and its output are what its proponent claims them to be. Data 

scientists may be required to describe the data used to train the AI system. 

Developers may be required to explain the features and weights that were 

chosen for the machine-learning algorithm. Technicians knowledgeable 

about how to operate the AI system may be needed to explain what they did 

when they used the tool, and the results that they obtained. These technicians, 

however, may be entirely at sea when asked to explain how the data was 

 

 351 See FED. R. EVID. 901(b)(1)–(10). 

 352 See 31 Charles A. Wright & Victor J. Gold, Federal Practice and Procedure: Evidence §7103 

24–25 (1st ed. 2000), which states that “[f]or purposes of analyzing the scope of Rule 901, the most 

important additional relationship is the one between that provision and Rule 602. . . . Both Rules 602 and 

901 identify elemental qualities that make evidence worthy of consideration. Since the provisions perform 

similar functions, it is important to know when evidence is subject to the personal knowledge requirement 

of Rule 602 and when it is subject to the authentication or identification requirement of Rule 901. Rule 

602 applies only to testimonial evidence. . . . Rule 901 does not apply to testimonial evidence; it applies 

to all other evidence. The distinction can be misleading, however, because it might be taken to suggest 

that Rules 602 and 901 never apply to the same evidence. In fact, these provisions are simultaneously 

applied where testimony is the means by which some respect of non-testimonial evidence is relayed to 

the jury.”; See, also id. at 25, n.33 (“Further, perhaps the most common way to establish authenticity or 

identity is with testimony that satisfies the personal knowledge requirement of Rule 602. See Rule 

901(b)(1).” (emphasis added)). 

 353 FED. R. EVID. 602. 
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collected or cleansed, how the algorithm that underlies the AI system was 

programmed, or how the system was tested to show that it produces valid 

and reliable results. An example illustrates this nicely. 

As mentioned above, a Canadian company named BlueDot developed 

an algorithm that allowed it to examine data from a large number of publicly 

available sources—as varied and diverse as medical bulletins, livestock 

reports, and airline flight information—enabling it to accurately predict, as 

early as December, 2019, where the COVID-19 virus would spread.354 

Development of the algorithm required a team that included, among other 

disciplines, engineers, ecologists, geographers, and veterinarians.355 Once 

developed, the algorithm had to be trained for over a year to learn how to 

detect 150 pathogens.356 If evidence derived from use of the BlueDot 

algorithm was being offered into evidence at trial, the party seeking to 

introduce it would be required to show how it could accurately and reliably 

accomplish what its developers claimed it could. Given the number of 

specialties involved in the tool’s development, and the length and complexity 

of the process by which it was “trained” to analyze data from so many 

disparate sources, it is difficult to imagine how a single person would be able 

to testify from personal knowledge in order to do so. 

Of course, Rule 602 would not require authentication by a single person 

possessing personal knowledge of all of the information needed to 

authenticate the BlueDot’s AI technology, if the person chosen for this task 

qualified as an expert witness under Rules 702 and 703.357 Rule 702 provides 

that: “A witness who is qualified as an expert by knowledge, skill, experience 

training or education may testify in the form of an opinion or otherwise if: 

(a) the expert’s scientific, technical, or other specialized knowledge will help 

the trier of fact to understand the evidence or to determine a fact in issue; (b) 

the testimony is based on sufficient facts or data; (c) the testimony is the 

product of reliable principles and methods; and (d) the expert has reliably 

applied the principles and methods to the facts of the case.”358 

 

 354 See Bill Whitaker, supra note 94. 

 355 See id. 

 356 See id. 

 357 See Charles A. Wright & Victor J. Gold, supra note 352 §7103, at 26, stating that “[t]he 

connections between Rule 901 and the rules governing opinion evidence are also of consequence. Rules 

701 and 702 impose general limits on the admissibility of lay and expert opinion testimony. . . . Rule 

901(b) seems to assume that opinion evidence may be admitted under Rules 701 and 702 in certain limited 

contexts. . . .” One such context is Rule 901(b)(3), which provides that authentication may be 

accomplished by “[a] comparison with an authenticated specimen by an expert witness or the trier of 

fact.” Similarly, Rule 901(b)(5) states that authentication of the identity of a person’s voice may be 

accomplished by “[a]n opinion identifying a person’s voice.” 

 358 FED. R. EVID. 702. 
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Importantly, Rule 703 states that: “An expert may base an opinion on 

facts or data in the case that the expert has been made aware of or personally 

observed. If experts in the particular field would reasonably rely on those 

kinds of facts or data in forming an opinion on the subject, they need not be 

admissible for the opinion to be admitted.”359 If the requirements of Rules 

702 and 703 were met, then, a party that wanted to authenticate an AI system 

that was developed by a team of individuals with scientific, technical, or 

specialized knowledge beyond the personal knowledge of any one person 

could do so with a single qualified expert. But that is a big “if,” because, as 

will be seen, the requirements of Rules 702 and 703 are quite demanding 

when applied as intended by the Federal Rules of Evidence. 

The key takeaway point is that lawyers must keep in mind, and judges 

must be vigilant to require, that the person or persons called to authenticate 

AI evidence either have personal knowledge of the authenticating facts or 

qualify as an expert that is permitted to incorporate into their testimony 

information from sources beyond their own personal knowledge, provided it 

is sufficiently reliable.360 

The second authenticating rule most suited to AI evidence is Rule 

901(b)(9). It permits authentication by “[e]vidence describing a process or 

system and showing that it produces an accurate result.”361 Of course, to do 

so, the party that wishes to introduce the AI evidence would face the exact 

challenges just described in the discussion of Rule 901(b)(1)—calling a 

single person or persons themselves possessing personal knowledge of all 

the authenticating facts or qualifying as an expert under Rules 702 and 703.362 

 

 359 FED. R. EVID. 703. 

 360 See, e.g., Fed. R. Evid. 703. See also United States v. Frazier, 387 F.3d 1244, 1260 (11th Cir. 

2004), for a discussion of the importance of a trial judge to diligently fulfill their “gatekeeping” function 

under Fed. R. Evid. 104(a) to ensure the “reliability and relevancy of expert testimony” because an 

expert’s opinion “can be both powerful and quite misleading because of the difficulty in evaluating it.” 

The Court in Frazier noted that “[i]ndeed, no other kind of witness is free to opine about a complicated 

matter without any firsthand knowledge of the facts in the case and based upon otherwise inadmissible 

hearsay if the facts or data are ‘of a type reasonably relied upon by experts in the particular field in 

forming opinions or inferences upon the subject.’” (internal citations omitted)); Cooper v. Smith & 

Nephew, Inc., 259 F.3d 194, 199 (4th Cir. 2001)(“While Rule 702 was intended to liberalize the 

introduction of relevant expert evidence, courts ‘must recognize that due to the difficulty of evaluating 

their testimony, expert witnesses have the potential to be both powerful and quite misleading.’”) (internal 

citation omitted)). 

 361 FED. R. EVID. 901(b)(9). 

 362 There are two additional rules of evidence that may be used to authenticate AI evidence that are 

closely related to Rules 901(b)(1) and 901(b)(9). They are Fed. R. Evid. 902(13), which allows 

authentication of “[a] record generated by an electronic process or system that produces an accurate result, 

as shown by a certification of a qualified person”; and Fed. R. Evid. 902(14), which allows authentication 

of “[d]ata copied from an electronic device, storage medium, or file, if authenticated by a process of 

digital identification, as shown by a certification of a qualified person.” Rules 902(13) and (14) would 

allow the proponent of AI evidence to authenticate it by substituting the certificate of a qualified witness 
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An important feature of authentication needs careful consideration in 

connection with admitting AI evidence. Normally, a party has fulfilled its 

obligation to authenticate non-testimonial evidence by producing facts that 

are sufficient for a reasonable factfinder to conclude that the evidence more 

likely than not is what the proponent claims it is.363 In other words, by a mere 

preponderance. This is a relatively low threshold—51%, or slightly better 

than a coin toss.364 However, as we have shown in this paper, not all AI 

evidence is created equal. Some AI systems have been tested and shown to 

be valid and reliable. Others have not, when, for example, efforts to 

determine their validity and reliability have been blocked by claims of 

proprietary information or trade secret. Furthermore, some of the tasks for 

which AI technology has been put to use can have serious adverse 

consequences if it does not perform as promised—such as arresting and 

criminally charging a person based on flawed facial recognition technology 

or sentencing a defendant to a long term of imprisonment based on an AI 

system that has been trained using biased or incomplete data that 

inaccurately or differentially predicts the likelihood that the defendant will 

reoffend. 

The greater the risk of unacceptable adverse consequences, the greater 

the need to show that the AI technology is unlikely to produce those 

consequences. Judges, tasked with making the initial determination of 

admissibility of AI evidence under Rule 104(a), should be skeptical of 

admitting AI evidence that has been shown to be accurate by no more than 

an evidentiary coin toss. They should insist that the proponent of the 

evidence establish the validity and reliability of the AI to a degree that is 

commensurate with the risk of the adverse consequences likely to occur if 

the technology does not perform as claimed. And if the proponent of the 

evidence fails to do so, then the trial judge should evaluate under Rule 403 

 

for their live testimony. But it must be stressed that the qualifications of the certifying witness and the 

details of the certification that the evidence produces an accurate and reliable result must be the same as 

would be required by the in-court testimony of a similarly qualified witness. Rules 902(13) and (14) are 

not invitations for boilerplate or conclusory assertions of validity and reliability and should not be allowed 

to circumvent the need to demonstrate, not simply proclaim, the accuracy and reliability of the system or 

process. See, e.g., Wright & Gold, supra note 352 §7147, at 43, stating that “[n]ewly adopted Rule 

902(13)] allows the authenticity foundation that satisfies Rule 901(b)(9) [process or system producing 

accurate results] to be established by a certification rather than the testimony of a live witness. If the 

certification provides information that would be insufficient to authenticate the record if the certifying 

person testified, then authenticity is not established under Rule 902(13).” The same applies for the 

certification in Rule 902(14), certified data copied from an electronic device, storage medium, or file. 

 363 See, e.g., Lorraine v. Markel Am. Ins. Co., supra note 335 at 542; United States v. Safavian, 435 

F.Supp.2d. 36, 38 (D.D.C. 2006); United States v. Holmquist, 36 F.3d 154, 168 (1st Cir. 1994) (“the 

standard for authentication, and hence for admissibility, is one of reasonable likelihood.”). 

 364 See, e.g., Martin, supra note 343 § 901.02[1], at 901–07 (“[The requirement to authenticate or 

identify evidence imposed by Rule 901(a)] is a mild standard—favorable to admitting the evidence.”). 
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whether the probative value of AI authenticated by a mere preponderance is 

substantially outweighed by the danger of unfair prejudice to the adverse 

party or would confuse or mislead the jury to an unacceptable degree,365 

taking into consideration the nature of the adverse consequences that could 

occur if the AI technology is insufficiently accurate or reliable. 

What is the best, fairest way to do so? We believe it is to employ Rule 

102, which requires the rules of evidence to be “construed so as to administer 

every proceeding fairly . . . and promote the development of evidence law”366 

to “borrow” from Rule 702 and the cases that have interpreted it, when 

determining the standard for admitting scientific, technical, or other 

specialized information that is beyond the understanding of lay jurors and 

generalist judges. These factors are commonly referred to as the Daubert 

factors and are discussed next. 

D.    Usefulness of the Daubert Factors in Determining Whether to Admit 

AI Evidence 

As previously noted, Federal Rule of Evidence 702 requires that 

introduction of evidence dealing with scientific, technical, or specialized 

knowledge that is beyond the understanding of lay jurors be based on a 

sufficient facts or data and reliable methodology that has been applied 

reliably to the facts of the particular case.367 These factors were added to the 

evidence rules in 2000 to bolster the rule in light of the U.S. Supreme Court’s 

decisions in Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579 

(1993), and Kumho Tire Co. v. Carmichael, 119 S. Ct. 1167 (1999).368 

Therefore, while Rule 702 was not intended to codify the Daubert decision, 

the factors discussed in that decision relating to determining the reliability of 

scientific or technical evidence are quite informative when determining 

whether Rule 702’s reliability369 requirement has been met. As described in 

the Advisory Committee Note to the amendment of Rule 702 that went into 

effect in 2000, the “Daubert Factors” are: “(1) whether the expert’s 

technique or theory can be or has been tested . . . ; (2) whether the technique 

 

 365 See FED. R. EVID. 403. 

 366 FED. R. EVID. 102. 

 367 See FED. R. EVID. 702 (b)-(d). See also generally In re Paoli R.R. Yard PCB Litig., 35 F.3d 717, 

742 (3d Cir. 1994), which helpfully discusses the importance of the reliability factor in the Daubert 

analysis, and the obligation of the trial judge to “take into account” all of the factors listed in Daubert 

that are relevant to determining the reliability of the scientific or technical evidence that is being offered 

into evidence. 

 368 See Advisory Committee Note, FED. R. EVID. 702 (2000). 

 369 In legal parlance the “reliability” of scientific or technical evidence usually refers to its 

trustworthiness, as opposed to the narrower technical definition of “reliability” used in this paper. The 

legal concept of reliability encompasses both validity (i.e., accuracy) and reliability (i.e., consistency 

across similar circumstances). 
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or theory has been subject to peer review and publication; (3) the known or 

potential rate of error of the technique or theory when applied; (4) the 

existence and maintenance of standards and controls; and (5) whether the 

technique or theory has been generally accepted in the scientific [or 

technical] community.”370 

The usefulness of borrowing these factors in assessing whether AI 

evidence should be admitted is readily apparent. To authenticate AI 

technology, its proponent must show that it produces accurate, that is to say 

valid, results. And it must perform reliably, meaning that it consistently 

produces accurate results when applied in similar circumstances. When the 

accuracy and reliability of technical evidence has been verified through 

independent testing and evaluation of the AI system that produced it, the 

methodology used to develop the evidence has been published and subject 

to review by others in the same field of science or technology, when the error 

rate associated with the AI system use is not unacceptably high, when the 

standard testing methods and protocols have been followed, and when the 

methodology used is generally accepted within the field of similar scientists 

or technologists, then it has been authenticated. It does what its proponents 

say it does. And introducing it produces none of the adverse consequences 

that Rule 403 is designed to guard against. 

In contrast, when the validity and reliability of the system or process 

that produces AI evidence has not properly been tested, when its underlying 

methodology has been treated as a trade secret by its developer preventing it 

from being verified by others, when applying the method produces 

unacceptably high error rates, when corners were cut and standard 

procedures were not followed when it was developed or employed, or when 

the methodology is not accepted as reliable by others in the same field, then 

it is hard to maintain with a straight face that it does what its proponent 

claims it does, which ought to render it inauthentic and inadmissible. The 

bottom line is that if a lawyer intends to rely on AI evidence to prove their 

case, they would be foolish not to consider these five factors and marshal the 

facts to show compliance with as many of them as they can. And if the reader 

is a judge that takes seriously their obligation to employ the rules of evidence 

during a trial “to the end of ascertaining the truth and securing a just 

determination,”371 they will insist that the party offering evidence produced 

by an AI system to prove its case adequately has shown that it does what its 

proponent claims it does, to a degree of certainty commensurate with the risk 

of an unacceptably bad outcome if it turns out that the technology was 

unreliable. Failing that, the AI evidence should be excluded for insufficiency 

 

 370 See Advisory Committee Note, supra note 368. 

 371 FED. R. EVID. 102. 
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of authentication (Rule 901(a)), failure to show the use of reliable 

methodology that was replied applied to the facts of the case (Rule 702), 

and/or excessive danger of unfair prejudice, or of confusing or misleading 

the jury (Rule 403). 

E.    Practice Pointers for Lawyers and Judges 

If both lawyers and judges accept that there are multiple types and uses 

of AI, and that there are many potential issues with it—for example, risk of 

bias, lack of robust testing and validation, function creep, potential lack of 

transparency and explainability, and possible lack of resilience—which can 

all affect the validity and reliability of AI evidence, and they recognize the 

need to authenticate it properly before it is admitted into evidence (and the 

need to follow the rules that govern how to do so), then the question arises: 

How should lawyers faced with introducing or challenging AI evidence, and 

judges who must rule on its admissibility, go about doing so? Below, we 

offer some practical suggestions with the hope that they will make this task 

less daunting in practice. 

1.    What problem was the AI created to solve? 

As we have shown, the essence of AI technology comes down to the 

data and the algorithm or algorithms that were developed to govern it. 

Algorithms are a set of rules or procedures for solving a problem or 

accomplishing an end. So, the starting place for determining the admissibility 

of AI technology is to define the problem that the AI was designed to solve. 

Knowing this is essential to assessing the validity of the system (i.e., its 

accuracy in performing these functions); its reliability (i.e., the consistency 

with which it produces the same or substantially similar results when applied 

under substantially similar circumstances); and whether it is being used for 

purposes for which it was not designed (i.e., there has been substantial 

function creep). The proponent of the evidence needs to know its design 

objective in order to advance the evidence necessary to secure its 

admissibility. Opposing parties need to know this information to be able to 

intelligently assess whether its admissibility may be challenged. And judges 

need to know this to be able to rule on the admissibility of the evidence 

derived from the AI system. Relevance is not an abstract concept. Evidence 

is relevant only to the extent that it has the ability to prove or disprove facts 

that are consequential to the resolution of a case. The problem that the AI 

was developed to resolve—and the output it produces—must “fit” with what 

is at issue in the litigation. Without knowing what the AI was designed and 

programmed to do, none of these fundamental questions can be answered. 
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2.    How was the AI developed, and by whom? 

One of the issues that affects the validity and reliability of AI evidence 

is whether its design was influenced by intended or unintended bias. Was the 

data used to train the AI representative, or skewed? Is it representative of the 

proper target population? If not trained with overtly discriminatory data, 

were discriminative proxies used in the training process? What assumptions, 

norms, rules, or values were used to develop the system? Were the people 

who did the programming themselves sufficiently qualified or experienced 

to ensure that there was not inadvertent bias that could impact the validity 

and reliability of the output of the system? Have the programmers given due 

consideration to the population that will be affected by the performance of 

the system? It does not require Napoleonic insight to realize that these 

questions cannot be answered without knowledge about the details of the 

data that was used as input for purposes of training, how the AI system was 

developed, including the design choices that were made, how the system was 

operated, and how the output was interpreted. When the party offering the 

output of an AI system into evidence thwarts efforts to obtain this 

information by asserting that it is proprietary or a trade secret, this should be 

a red flag for both the adverse party and the court. And judges should be 

particularly careful not to allow a party planning to introduce AI evidence to 

hide behind claims of proprietary information or trade secrets without careful 

consideration of the consequence to the party against whom the AI evidence 

will be offered. Will allowing trade-secret claims to shield disclosure of how 

the AI evidence was developed, trained, and functions prevent the party 

against whom it will be introduced from having a fair opportunity to learn 

how the AI works so they can prepare a defense? If so, how are they to frame 

evidentiary challenges to its use? Adverse parties who are refused access to 

the information they need to assess AI’s validity and reliability on the basis 

of claims of trade secrets should challenge these designations and seek a 

ruling from the court that either grants them access to the information that 

they reasonably need (subject to proper protective measures,) or prohibits 

the introduction of the AI evidence at trial. And judges must ask themselves 

how they can fulfill their gatekeeping role in ruling on the admissibility of 

the AI evidence if presented with little more than a “black-box” AI program 

and a conclusory claim that it consistently functions as it was designed to. 

3.    Was the validity and reliability of the AI sufficiently tested? 

We have repeatedly stressed the importance of the concepts of validity 

and reliability in assessing whether AI evidence should be admitted as 

evidence. The proponent of AI evidence should be required to demonstrate 

that the AI system that produced the evidence being offered has been tested 

(preferably independently) to confirm that it is both valid for the purpose for 
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which it is being offered, and reliable. If it was not tested, why not? And why 

should the court even consider allowing the introduction of the output of an 

untested AI system? Who designed and carried out the testing? Was it the 

same people who developed the system in the first place? If so, was the 

methodology used to test the system standard or otherwise reasonable, 

adhering to procedures accepted as appropriate by the relevant scientific or 

technological community familiar with the subject matter at the heart of the 

AI system? Under what conditions did the testing occur, and how do they 

compare to the circumstances under which the system is now being used? 

Was the system tested both for validity and reliability? Has the validity and 

reliability been confirmed by others who are independent of the developers? 

Are the results of the testing still available so that they may be reviewed by 

the adverse party and the court? The answers to these questions should 

inform the court’s decision as to whether the evidence should be admitted at 

all. Allowing the introduction of AI evidence that has not been shown to be 

valid and reliable for the purpose for which it is being introduced 

substantially increases the risk that its probative value (if any) is substantially 

outweighed by the danger of unfairly confusing or misleading the factfinder. 

This is particularly so if the AI evidence is the primary evidence being 

offered to prove an essential element of the proponent’s case. 

4.    Is the manner in which the AI operates “explainable” so that it can be 

understood by counsel, the court, and the jury? 

As we discussed earlier, an important factor in evaluating the 

admissibility of AI evidence is whether the functioning of the system that 

produced it can be explained to lay persons unfamiliar with the technology 

and methodology involved, so they can understand how the system operates, 

how it achieves its results, and thus, evaluate the amount of weight they are 

willing to give to it. Recall our earlier discussion of “XAI” (“Explainable 

AI”) and the principles advanced by the National Institute of Standards and 

Technology.372 In NIST’s draft publication titled Four Principles of 

Explainable Artificial Intelligence, the authors explained why it is important 

for the developers of AI programs to be able to explain to others—even if 

only in general terms—how they work. Notably, they stated: 

With recent advances in artificial intelligence (AI), AI systems have 

become components of high-stakes decision processes. The nature 

of these decisions has spurred a drive to create algorithms, methods, 

and techniques to accompany outputs for AI systems with explanations. 

This drive is motivated in part by laws and regulations which state that 

decisions including those from automated systems, provide information 

 

 372   See discussion supra at page 61; Phillips et. al., supra note 241. 
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about the logic behind those decisions and the desire to create trust- 

worthy AI.373 

Based on these calls for explainable systems, it can be assumed that the 

inability or failure to articulate an answer can affect the level of trust users 

will afford that system. Suspicions that the system is biased or unfair can 

raise concerns about harm to oneself and to society. This may slow societal 

acceptance and adoption of AI technology, as members of the general public 

oftentimes place the burden of meeting societal goals on manufacturers and 

programmers themselves. Therefore, in terms of societal acceptance and 

trust, developers of AI systems may need to consider that multiple attributes 

of an AI system can influence public perception of the system. Explainable 

AI is one of several properties that can increase trust in AI systems. “Other 

properties include resiliency, reliability, elimination of bias, and 

accountability.”374 

The four principles of explainable AI are defined as follows: 

 

Explanation: Systems deliver accompanying evidence or reason(s) for all 

outputs;  

 

Meaningful: Systems provide explanations that are understandable to individual 

users;  

 

Explanation Accuracy: the explanation correctly reflects the system’s process 

for generating the output; and 

 

Knowledge Limits: The system only operates under conditions for which it was 

designed or when the system reaches a sufficient confidence in its output.375 

 

Although written from the perspective of scientists interested in the 

development of valid and reliable AI methods, the discussion emphasizes the 

same themes that underlie the purpose of the rules of evidence: that when 

technical information is offered during a trial, the proponent of that evidence 

must demonstrate that it is sufficiently trustworthy for the jury to credit it in 

making its decision. If the proponent of the evidence cannot even explain 

how the AI system operates in a way that can be understood by the trier of 

fact (including assuring them that it only is being used under the conditions 

 

 373 Phillips et al., supra note 241 at 1. 

 374 Id. 

 375 Id. at 2. (emphasis in original). 
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for which it was designed and that there is sufficient confidence in its 

accuracy), then the evidence produced from it should not be admitted by the 

court. 

5.    What is the risk of harm if AI evidence of uncertain trustworthiness is 

admitted? 

As we have explained, the Federal Rules of Evidence do not require that 

all risk of error be eliminated before scientific and technical evidence may 

be admitted. After all, evidence is relevant if it has any tendency, however 

slight, to prove or disprove facts that are important to deciding a case.376 And 

authenticity is established if the proponent demonstrates that the evidence 

more likely than not is what it purports to be.377 The argument could be made 

that even AI evidence shown to be valid and reliable for a particular purpose, 

but which is being offered to prove something for which its validity and 

reliability have not been established, has some tendency to prove what it is 

being offered to prove. 

The expert witness rules378—which we argue should inform the decision 

of whether AI evidence is admissible—are probably the most helpful rules 

for evaluating the admissibility of AI evidence because they supply 

demanding standards: (i) whether there is a sufficient factual basis to support 

the evidence; (ii) whether the methods and principles used to generate the 

evidence were reliable; and (iii) whether they were reliably applied to the 

facts of the particular case.379 And the Daubert Factors further focus the 

inquiry on the following: (i) whether the methodology was tested; (ii) 

whether there is a known error rate; (iii) whether the methods used are 

generally accepted as reliable within the relevant scientific or technical 

community that is familiar with the methodology; (iv) whether the 

methodology has been subject to peer review by others knowledgeable in the 

field; and (v) if standard procedures or protocols are applicable to the 

methodology, whether they were complied with.380 But even this enhanced 

level of analysis does not require perfection. The ultimate question that must 

be decided in each case is whether the evidence is sufficiently valid and 

reliable for the purpose for which it is being offered. The answer to this 

question will depend on what is at stake if the fact finder credits AI evidence 

that is invalid and unreliable. Two factual scenarios will help to illustrate the 

import of this question. 

 

 376 See FED. R. EVID. 401. 

 377 See United States v. Holmquist, 36 F. 3d 154, 168 (1st Cir. 1994). 

 378 See FED. R. EVID. 702–03. 

 379 See FED. R. EVID. 702. 

 380 See Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579, 593–94 (1993). 
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Imagine a civil case for breach of contract that seeks money damages. 

There have been terabytes of electronic documents generated by the parties 

that are potentially relevant to the resolution of the dispute. Reviewing them 

all manually, by humans, would be too time consuming and costly. A party 

requested to produce “all documents relevant to the dispute” by its adversary 

uses an AI system known in the eDiscovery community as “technology-

assisted review” or “TAR”381 to search the records and to identify those that 

are responsive to the request for production, and those that are not. The party 

produces the records deemed responsive by the TAR system, subject to a 

review for privilege. The requesting party is not satisfied with the 

production, the parties are unable to reach agreement, and they take the 

dispute to the court. The producing party touts the accuracy of its TAR 

system; the requesting party reels off reasons why it thinks the search 

methodology was unreliable and the production is incomplete. The judge 

must decide. Undoubtedly, the court will consider the “proportionality 

factors” set forth in Fed. R. Civ. P. 26(b)(1),382 including what is at stake in 

the litigation, how important the information is to resolving the issues in 

dispute, how much the TAR process already cost the producing party, what 

it would cost to require further TAR (or other search and review efforts), 

how much more complete and accurate the production might be if more TAR 

(or other search and review methods) were performed, what the parties 

resources are, and whether what was produced—even if it does not include 

all of the available responsive documents—is sufficient to allow the 

requesting party a fair opportunity to prove its case.383 Depending on how the 

judge weighs these factors they may rule that the production is “good 

enough,” even if imperfect, or they may require further TAR (or other search 

and review methods), and decide who must pay for it. But unless the initial 

production is so clearly deficient as to hamstring the requesting party’s 

ability to prove its case, the risk of ruling that no further production is 

required is not catastrophic to the requesting party. Expressed differently, the 

production, though imperfect, is sufficient, and the possibility that some 

undiscovered but responsive documents might not have been produced is not 

 

 381 See Grossman & Cormack, supra note 56. 

 382 See FED. R. CIV. P. 26(b)(1) (“Parties may obtain discovery regarding any nonprivileged matter 

that is relevant to any party’s claim or defense and proportional to the needs of the party’s case, 

considering the importance of the issues at stake in the action, the amount in controversy, the parties’ 

relative access to relevant information the parties’ resources, the importance of the discovery in resolving 

the issues, and whether the burden or expense of the proposed discovery outweighs it is likely benefit.”). 

 383 FED. R. CIV. P. 26(g) requires that the search inquiry must be reasonable, not perfect; an attorney’s 

signature on a discovery response certifies that it was based on a “reasonable inquiry.” See also FED. R. 

CIV. P. 26(b)(1) defines the scope of discovery and provides that parties “may obtain discovery regarding 

any nonprivileged matter that is relevant to any party’s claim or defense and proportional to the needs of 

the case. . . .” 
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the end of the world for the requesting party—the circumstances of the case 

will allow a degree of risk that the TAR system did not locate every possible 

responsive document. 

Now, contrast this situation with one where a judge is tasked with 

sentencing a criminal defendant who has been convicted of possession with 

the intent to distribute a controlled substance. The defendant has a history of 

mental health problems, substance abuse, and two prior drug convictions: 

one for simple possession and the other for distribution. In fashioning a 

sentence, the judge will consider a number of factors to arrive at a sentence 

that is sufficient, but not excessive: the nature and circumstances of the 

offense; the safety of the public; the need to deter the defendant and others 

from committing similar crimes in the future; the history and characteristics 

of the particular defendant; whether the sentence should include drug testing 

and mental health treatment to lessen the risk that the defendant will 

recidivate; and perhaps other relevant factors.384 

At sentencing, the prosecution argues that a prolonged jail sentence is 

needed to protect the public and to deter the defendant from committing 

future drug offenses. The prosecutor relies on an evaluation of the defendant 

performed by the court’s probation department, which used an AI system 

similar to the COMPAS system we have discussed at length in this paper. 

That evaluation compared the defendant’s characteristics to a national 

database of criminal convictions and determined that the defendant is 70% 

likely to recidivate within two years of his release from prison, unless the 

sentence includes both mental health treatment and substance abuse 

treatment. Focusing on the 70% recidivism prediction, the prosecutor argues 

that the judge should incarcerate the defendant for an extended period of 

time. The defense attorney argues that the AI system was not designed to be 

used to recommend the length of the sentence of incarceration, but rather to 

determine what services should be included in the sentence to mitigate the 

risk of recidivism once the defendant has been released from custody. The 

defense attorney also points out that the data used to make the recidivism 

prediction was gathered from a national database, not one that was 

representative of convictions in the state where the case has been brought. 

Nor has the AI been independently validated, and the defense attorney was 

not allowed access to the information needed to test the validity and 

reliability of the AI system, and so on. 

 

 384 See, e.g., 18 U.S.C. § 3553(a). The sentencing factors include: the nature and circumstances of 

the offense and the history and characteristics of the defendant; the need for the sentence to reflect the 

seriousness of the offense, promote respect for the law and provide just punishment for the offense; to 

afford adequate deterrence to criminal conduct, to protect the public from further crimes of the defendant; 

to provide the defendant with needed educational or vocational training, medical care, or other 

correctional treatment in the most effective manner. See id. 
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The judge must decide whether to rely on the AI recidivism prediction 

when deciding how long a sentence of incarceration they should impose. If 

the AI system has not been shown to be valid and reliable for the purpose for 

which it is being offered (i.e., determining the length of a jail sentence), and 

the defense has not had a fair opportunity to challenge its validity and 

reliability because the developer of the software successfully asserted trade-

secret protection, then the judge is faced with weighing the consequences of 

using what may be untrustworthy information to make a decision that will 

impact the defendant’s personal freedom for a long period of time. The 

consequence of “getting it wrong” in this situation is substantial. 

These two scenarios illustrate the point that must be emphasized. The 

greater the risk of adverse consequences (and the greater the magnitude of 

those consequences) in relying on AI evidence that is of uncertain validity 

and reliability, the greater the need for the trial judge to carefully consider 

whether to admit the AI evidence for the purpose for which it was offered. 

This is where Fed. R. Evid. 403 comes into play. The AI evidence may be 

relevant, and it may be valid and reliable for a purpose other than that which 

it is being offered to prove, but if the risk of unacceptable consequences to 

the defendant substantially outweighs its probative value, it should be 

excluded. 

6.    Timing Issues 

It should be clear at this point that determining whether AI evidence 

should be admitted in a trial is complicated, requires a great deal of 

information, and is not the type of issue that is well suited to being resolved 

in the middle of a trial, or on the fly. Preparation is critical, by both the 

proponent and opponent of AI evidence. And the judge needs time to hear 

the competing evidence, to carefully review the supporting materials, and to 

decide. But since there is no rule of evidence that specifically addresses AI 

evidence, nor do the Federal Rules of Civil and Criminal Procedure directly 

require the disclosure of AI evidence, there is a risk that it may not be 

disclosed soon enough for disputes about its admissibility to be determined 

before trial. It is true that a party that intends to call a witness who would 

meet the definition of an expert witness under Fed. R. Evid. 702, in order to 

lay the foundation for AI evidence, would have to disclose the witnesses’ 

opinions and the basis therefore, which should give its adversary and the 

court some advanced notice that AI evidence is going to be introduced.385 But 

expert disclosures often are more general about the subjects of the expert’s 

intended testimony than the rules actually require, so that the intent to 

introduce AI evidence may not be clearly flagged far enough ahead of trial. 

 

 385 See FED. R. CIV. P. 26(b)(4); FED. R. CRIM. P. 16(a)(1)(G). 
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That means that the parties should communicate well ahead of trial to 

determine if AI evidence is going to be offered at trial, and reach agreement 

(or bring the matter to the attention of the court) about when such AI 

evidence will be disclosed, the extent to which the party against whom the 

AI evidence will be admitted will have access to the information needed to 

assess and challenge its validity and reliability, and whether the proponent 

of the AI evidence will assert proprietary information or trade-secret 

protection to deny the production of such information to the opposing party. 

And the trial judge should inquire during the pretrial stages of the case 

whether AI evidence will be introduced, set a deadline for its production, as 

well as for challenges to its admissibility, rule on any trade-secret claims, 

and schedule a hearing well before trial to insure that the court itself is 

adequately informed and has sufficient time to make a principled decision as 

far in advance of trial as possible. Finally, a trial judge faced with ruling on 

the admissibility of AI evidence need not rely solely on the arguments of the 

attorneys for the parties and their experts but can appoint a court expert as 

allowed by Fed. R. Evid. 706386, if the circumstances so warrant. 

CONCLUSION 

Although the explosion in the use of AI within increasingly large 

sectors of our society is of relatively recent vintage, it is here to stay. AI is 

in a state of such rapid advancement that the law of evidence governing the 

circumstances under which AI technology and its output should be admitted 

into evidence in civil and criminal trials is not well developed. A growing 

number of commentators have written about the potential problems and 

concerns that impact whether AI evidence should be admitted, but there are 

few court decisions that have squarely addressed the admissibility of AI 

evidence in proceedings governed by the Federal Rules of Evidence or their 

state-law equivalents. But this will change, in due course, as it is inevitable 

that AI technology will be at the heart of disputes that will increasingly find 

their way into court. When this happens, lawyers and judges must be 

prepared to address the evidentiary issues that influence whether the AI 

evidence is to be admitted. Since AI systems are complex and highly 

technical, most lawyers and judges will be ill equipped for this task unless 

they have at least a rudimentary understanding of what AI is, how it operates, 

scientific and statistical evaluation, and the issues that need to be addressed 

in order to make decisions about its validity and reliability, and hence its 

admissibility. And, since there are, at present, no rules in the Federal Rules 

of Evidence that directly address AI evidence, lawyers and judges must rely 

 

 386 See FED. R. EVID. 706. 
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on the rules that do exist to provide an analytical framework to assist them 

with the challenges that await them when they must confront these issues. 

Our aim has been to lend a helping hand in this process. We have tried to 

describe in language that is not overly technical what AI is, the types of AI 

that presently exist, some of the challenges AI can pose, the principles that 

govern whether an AI system produces valid and reliable output, the issues 

that need to be considered when determining its evidentiary value in trials, 

and the available rules of evidence which—while not perfect for the task—

are sufficient to insure fair outcomes, if followed. It is our hope that this 

article will be useful to lawyers and judge alike and will help to promote fair 

outcomes in trials in which AI evidence is sought to be admitted. At 

minimum, we hope that we have shown that when it comes to determining 

whether AI evidence should be admitted into evidence in civil and criminal 

trials, lawyers and judges cannot evaluate AI from a state of fundamental 

ignorance. In time, the court decisions will come, and there may even be new 

rules of evidence that give more specific guidance. But, in the meantime, we 

hope that this article will serve as a starting place. 
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