
Expert Systems with Applications 41 (2014) 4915–4928
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Learned lessons in credit card fraud detection from a practitioner
perspective
http://dx.doi.org/10.1016/j.eswa.2014.02.026
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +32 2 650 55 94.
E-mail addresses: adalpozz@ulb.ac.be (A. Dal Pozzolo), olivier.caelen@worldline.

com (O. Caelen), yleborgn@ulb.ac.be (Y.-A. Le Borgne), serge.waterschoot@worldline.
com (S. Waterschoot), gbonte@ulb.ac.be (G. Bontempi).
Andrea Dal Pozzolo a,⇑, Olivier Caelen b, Yann-Aël Le Borgne a, Serge Waterschoot b, Gianluca Bontempi a

a Machine Learning Group, Computer Science Department, Faculty of Sciences ULB, Université Libre de Bruxelles, Brussels, Belgium
b Fraud Risk Management Analytics, Worldline, Brussels, Belgium
a r t i c l e i n f o

Keywords:
Incremental learning
Unbalanced data
Fraud detection
a b s t r a c t

Billions of dollars of loss are caused every year due to fraudulent credit card transactions. The design of
efficient fraud detection algorithms is key for reducing these losses, and more algorithms rely on
advanced machine learning techniques to assist fraud investigators. The design of fraud detection algo-
rithms is however particularly challenging due to non-stationary distribution of the data, highly imbal-
anced classes distributions and continuous streams of transactions.

At the same time public data are scarcely available for confidentiality issues, leaving unanswered many
questions about which is the best strategy to deal with them.

In this paper we provide some answers from the practitioner’s perspective by focusing on three crucial
issues: unbalancedness, non-stationarity and assessment. The analysis is made possible by a real credit
card dataset provided by our industrial partner.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction Detection problems are typically addressed in two different
Nowadays, enterprises and public institutions have to face a
growing presence of fraud initiatives and need automatic systems
to implement fraud detection (Delamaire, Abdou, & Pointon, 2009).
Automatic systems are essential since it is not always possible or
easy for a human analyst to detect fraudulent patterns in transac-
tion datasets, often characterized by a large number of samples,
many dimensions and online updates. Also, the cardholder is not
reliable in reporting the theft, loss or fraudulent use of a card
(Pavía, Veres-Ferrer, & Foix-Escura, 2012). Since the number of
fraudulent transactions is much smaller than the legitimate ones,
the data distribution is unbalanced, i.e. skewed towards non-fraud-
ulent observations. It is well known that many learning algorithms
underperform when used for unbalanced dataset (Japkowicz &
Stephen, 2002) and methods (e.g. resampling) have been proposed
to improve their performances. Unbalancedness is not the only
factor that determines the difficulty of a classification/detection
task. Another influential factor is the amount of overlapping of
the classes of interest due to limited information that transaction
records provide about the nature of the process (Holte, Acker, &
Porter, 1989).
ways. In the static learning setting, a detection model is periodi-
cally relearnt from scratch (e.g. once a year or month). In the online
learning setting, the detection model is updated as soon as new
data arrives. Though this strategy is the most adequate to deal with
issues of non stationarity (e.g. due to the evolution of the spending
behavior of the regular card holder or the fraudster), little attention
has been devoted in the literature to the unbalanced problem in
changing environment.

Another problematic issue in credit card detection is the scar-
city of available data due to confidentiality issues that give little
chance to the community to share real datasets and assess existing
techniques.
2. Contributions

This paper aims at making an experimental comparison of sev-
eral state of the art algorithms and modeling techniques on one
real dataset, focusing in particular on some open questions like:
Which machine learning algorithm should be used? Is it enough
to learn a model once a month or it is necessary to update the mod-
el everyday? How many transactions are sufficient to train the
model? Should the data be analyzed in their original unbalanced
form? If not, which is the best way to rebalance them? Which
performance measure is the most adequate to asses results?

In this paper we address these questions with the aim of
assessing their importance on real data and from a practitioner

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.02.026&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.02.026
mailto:adalpozz@ulb.ac.be
mailto:olivier.caelen@worldline.com
mailto:olivier.caelen@worldline.com
mailto:yleborgn@ulb.ac.be
mailto:serge.waterschoot@worldline.com
mailto:serge.waterschoot@worldline.com
mailto:gbonte@ulb.ac.be
http://dx.doi.org/10.1016/j.eswa.2014.02.026
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

4916 A. Dal Pozzolo et al. / Expert Systems with Applications 41 (2014) 4915–4928
perspective. These are just some of potential questions that could
raise during the design of a detection system. We do not claim to
be able to give a definite answer to the problem, but we hope to
that our work serves as guideline for other people in the field.
Our goal is to show what worked and what did not in a real case
study. In this paper we give a formalisation of the learning problem
in the context of credit card fraud detection. We present a way to
create new features in the datasets that can trace the card holder
spending habits. By doing this it is possible to present the transac-
tions to the learning algorithm without providing the card holder
identifier. We then argue that traditional classification metrics
are not suited for a detection task and present existing alternative
measures.

We propose and compare three approaches for online learning
in order to identify what is important to retain or to forget in a
changing and non-stationary environment. We show the impact
of the rebalancing technique on the final performance when the
class distribution is skewed. In doing this we merge techniques
developed for unbalanced static datasets with online learning
strategies. The resulting frameworks are able to deal with unbal-
anced and evolving data streams. All the results are obtained by
experimentation on a dataset of real credit card transactions pro-
vided by our industrial partner.
3. State of the art in credit card fraud detection

Credit card fraud detection is one of the most explored domains
of fraud detection (Chan, Fan, Prodromidis, & Stolfo, 1999; Bolton &
Hand, 2001; Brause, Langsdorf, & Hepp, 1999) and relies on the
automatic analysis of recorded transactions to detect fraudulent
behavior. Every time a credit card is used, transaction data, com-
posed of a number of attributes (e.g. credit card identifier, transac-
tion date, recipient, amount of the transaction), are stored in the
databases of the service provider.

However a single transaction information is typically not suffi-
cient to detect a fraud occurrence (Bolton & Hand, 2001) and the
analysis has to consider aggregate measures like total spent per
day, transaction number per week or average amount of a transac-
tion (Whitrow, Hand, Juszczak, Weston, & Adams, 2009).
3.1. Supervised versus unsupervised detection

In the fraud detection literature we encounter both supervised
techniques that make use of the class of the transaction (e.g. gen-
uine or fraudulent) and unsupervised techniques. Supervised
methods assume that labels of past transactions are available and
reliable but are often limited to recognize fraud patterns that have
already occurred (Bolton & Hand, 2002). On the other hand, unsu-
pervised methods do not use the class of transactions and are capa-
ble of detecting new fraudulent behaviours (Bolton & Hand, 2001).
Clustering based methods (Quah & Sriganesh, 2008; Weston, Hand,
Adams, Whitrow, & Juszczak, 2008) form customer profiles to
identify new hidden fraud patterns.

The focus of this paper will be on supervised methods. In the lit-
erature several supervised methods have been applied to fraud
detection such as Neural networks (Dorronsoro, Ginel, Sgnchez, &
Cruz, 1997), Rule-based methods (BAYES Clark & Niblett, 1989,
RIPPER Cohen, 1995) and tree-based algorithms (C4.5 Quinlan,
1993 and CART Olshen & Stone, 1984). It is well known however
that an open issue is how to manage unbalanced class sizes since
the legitimate transactions generally far outnumber the fraudulent
ones.
3.2. Unbalanced problem

Learning from unbalanced datasets is a difficult task since most
learning systems are not designed to cope with a large difference
between the number of cases belonging to each class (Batista,
Carvalho, & Monard, 2000). In the literature, traditional methods
for classification with unbalanced datasets rely on sampling
techniques to balance the dataset (Japkowicz & Stephen, 2002).

In particular we can distinguish between methods that operates
at the data and algorithmic levels (Chawla, Japkowicz, & Kotcz,
2004). At the data level, balancing techniques are used as a
pre-processing step to rebalance the dataset or to remove the noise
between the two classes, before any algorithm is applied. At the
algorithmic level, the classification algorithms themselves are
adapted to deal with the minority class detection. In this article
we focus on data level techniques as they have the advantage of
leaving the algorithms unchanged.

Sampling techniques do not take into consideration any specific
information in removing or adding observations from one class, yet
they are easy to implement and to understand. Undersampling
(Drummond & Holte, 2003) consists in down-sizing the majority
class by removing observations at random until the dataset is
balanced.

SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer, 2011) over-
samples the minority class by generating synthetic minority
examples in the neighborhood of observed ones. The idea is to form
new minority examples by interpolating between examples of the
same class. This has the effect of creating clusters around each
minority observation.

Ensemble methods combine balancing techniques with a
classifier to explore the majority and minority class distribution.
EasyEnsemble is claimed in Liu, Wu, and Zhou (2009) to be better
alternative to undersampling. This method learns different aspects
of the original majority class in an unsupervised manner. This is
done by creating different balanced training sets by Undersampling,
learning a model for each dataset and then combining all
predictions.

3.3. Incremental learning

Static learning is the classical learning setting where the data are
processed all at once in a single learning batch. Incremental learning
instead interprets data as a continuous stream and processes each
new instance ‘‘on arrival’’ (Oza, 2005). In this context it is impor-
tant to preserve the previously acquired knowledge as well as to
update it properly in front of new observations. In incremental
learning data arrives in chunks where the underlying data genera-
tion function may change, while static learning deals with a single
dataset. The problem of learning in the case of unbalanced data has
been widely explored in the static learning setting (Chawla et al.,
2011; Drummond & Holte, 2003; Japkowicz & Stephen, 2002; Liu
et al., 2009). Learning from non-stationary data stream with
skewed class distribution is however a relatively recent domain.

In the incremental setting, when the data distribution changes,
it is important to learn from new observations while retaining
existing knowledge form past observations. Concepts learnt in
the past may re-occur in the future as new concepts may appear
in the data stream. This is known as the stability-plasticity dilem-
ma (Grossberg, 1988). A classifier is required to be able to respond
to changes in the data distribution, while ensuring that it still re-
tains relevant past knowledge. Many of the techniques proposed
(Chen, He, Li, & Desai, 2010; Polikar, Upda, Upda, & Honavar,
2001; Street & Kim, 2001) use ensemble classifiers in order to com-
bine what is learnt from new observations and the knowledge ac-
quired before. As fraud evolves over time, the learning framework
has to adapt to the new distribution. The classifier should be able

A. Dal Pozzolo et al. / Expert Systems with Applications 41 (2014) 4915–4928 4917
to learn from a new fraud distributions and ‘‘forget’’ outdated
knowledge. It becomes critical then to set the rate of forgetting
in order to match the rate of change in the distribution (Kuncheva,
2004). The simplest strategy uses a constant forgetting rate, which
boils down to consider a fix window of recent observations to
retrain the model. FLORA approach (Widmer & Kubat, 1996) uses
a variable forgetting rate where the window is shrunk if a change
is detected and expanded otherwise. The evolution of a class
concept is called in literature concept drift.

Gao, Fan, Han, and Philip (2007) proposes to store all previous
minority class examples into the current training data set to make
it less unbalanced and then to combine the models into an ensem-
ble of classifiers. SERA (Chen et al., 2009) and REA (Chen & He,
2011) selectively accumulate old minority class observations to
rebalance the training chunk. They propose two different methods
(Mahalanobis distance and K nearest neighbours) in order to select
the most relevant minority instances to include in the current
chunk from the set of old minority instances.

These methods consist in oversampling the minority class of the
current chunk by retaining old positive observations. Accumula-
tion of previous minority class examples is of limited volume due
to skewed class distribution, therefore oversampling does not
increase a lot the chunk size.
Table 1
Confusion Matrix.

True Fraud (Y1) True Genuine (Y0)

Predicted Fraud (bY1) TP FP

Predicted Genuine (bY0) FN TN
4. Formalization of the learning problem

In this section, we formalize the credit card fraud detection task
as a statistical learning problem. Let Xij be the transaction number j
of a card number i. We assume that the transactions are ordered in
time such that if Xiv occurs before Xiw then v < w. For each trans-
action some basic information is available such as amount of the
expenditure, the shop where it was performed, the currency, etc.
However these variables do not provide any information about
the normal card usage. The normal behaviour of a card can be mea-
sured by using a set of historical transactions from the same card.
For example, we can get an idea of the card holder spending habits
by looking at the average amount spent in different merchant cat-
egories (e.g. restaurant, online shopping, gas station, etc.) in the
last 3 months preceding the transaction. Let Xik be a new transac-
tion and let dt Xikð Þ be the corresponding transaction date-time in
the dataset. Let T denote the time-frame of a set of historical
transactions for the same card. XH

ik is then the set of the historical
transactions occurring in the time-frame T before Xik such that
XH

ik¼ Xij
� �

, where dt Xij
� �

–dt Xikð Þ and dtðXikÞ>dt Xij
� �

Pdt Xikð Þ�T .

For instance, with T¼90 days, XH
ik is the set of transactions for

the same card occurring in the 3 months preceding dt Xikð Þ. The
card behaviour can be summarised using classical aggregation
methods (e.g. mean, max, min or count) on the set XH

ik. This means
that it is possible to create new aggregated variables that can be
added to the original transaction variables to include information
of the card. In this way we have included information about the
user behaviour at the transaction level and we can now no longer
consider the card ID. Transactions from card holders with similar
spending habits will share similar aggregate variables. Let fXg be
the new set of transactions with aggregated variables. Each trans-
action X j is assigned a binary status Yj where Yj¼1 when the
transaction j is fraudulent and Yj¼0 otherwise. The goal of a
detection system is to learn P YjXð Þ and predict the class of a

new transaction bYN 2ð0;1Þ. Note that here the focus is not on
classifying the card holder, but the transaction as fraudulent or
legitimate.

Credit card fraud detection has some specificities compared to
classical machine learning problems. For instance, the continuous
availability of new products in the market (like purchase of music
on the Internet) changes the behaviour of the cardholders and con-
sequently the distributions PðXÞ. At the same time the evolution of
the types of frauds affects the class conditional probability distri-
bution PðYjXÞ. As a result the joint distribution PðX ;YÞ is not
stationary: this is is known as concept-drift (Hoens, Polikar, &
Chawla, 2012). Note that Gao et al. (2007) suggests that even when
the concept drift is not detected, there is still a benefit in updating
the models.
5. Performance measure

Fraud detection must deal with the following challenges: (i)
timeliness of decision (a card should be blocked as soon as it is
found victim of fraud, quick reaction to the appearance of the first
can prevent other frauds), (ii) unbalanced class sizes (the number
of frauds are relatively small compare to genuine transactions)
and (iii) cost structure of the problem (the cost of a fraud is not
easy to define). The cost of a fraud is often assumed to be equal
to the transaction amount (Elkan, 2001). However, frauds of small
and big amounts must be treated with equal importance. A fraud-
ulent activity is usually tested with a small amount and then, if
successful, replicated with bigger amount. The cost should also in-
clude the time taken by the detection system to react. The shorter
is the reaction time, the larger is the number of frauds that it is
possible to prevent. Depending on the fraud risk assigned by the
detection system to the transaction, the following can happens:
(i) transaction accepted, (ii) transaction refused (iii) card blocked.
Usually the card is blocked only in few cases where there is a high
risk of fraud (well known fraudulent patterns with high accuracy,
e.g. 99% correct). When a transaction is refused, the investigators
make a phone call to the card holder to verify if it is the case of a
false alert or a real fraud. The cost of a false alert can then be con-
sidered equivalent to the cost of the phone call, which is negligible
compared to the loss that occurs in case of a fraud. However, when
the number of false alerts is too big or the card is blocked by error,
the impossibility to make transactions can translate into big losses
for the customer. For all these reasons, defining a cost measure is a
challenging problem in credit card detection.

The fraud problem can be seen as a binary classification and
detection problem.
5.1. Classification

In a classification problem an algorithm is assessed on its accu-
racy to predict the correct classes of new unseen observations. Let
fY0g be the set of genuine transactions, fY1g the set of fraudulent
transactions, fbY0g the set of transactions predicted as genuine and
fbY1g the set of transactions predicted as fraudulent. For a binary
classification problem it is conventional to define a confusion
matrix (Table 1).

In an unbalanced class problem, it is well-known that quantities
like TPR (TP

TPþFN), TNR (TN
FPþTN) and Accuracy (TPþTN

TPþFNþFPþTN) are mislead-
ing assessment measures (Provost, 2000). Balanced Error Rate
(0:5� FP

TNþFP þ 0:5� FN
FNþTP) may be inappropriate too because of dif-

ferent costs of misclassification false negatives and false positives.
A well accepted measure for unbalanced dataset is AUC (area

under the ROC curve) (Chawla, 2005). This metric gives an measure

4918 A. Dal Pozzolo et al. / Expert Systems with Applications 41 (2014) 4915–4928
of how much the ROC curve is close to the point of perfect classi-
fication. Hand (2009) considers calculation of the area under del
ROC curve as inappropriate, since this translate into making an
average of the misclassification cost of the two classes. An alterna-
tive way of estimating AUC is based on the use of the MannWhit-
ney statistic and consists in ranking the observations by the fraud
probability and measuring the probability that a random minority
class example ranks higher than a random majority class example
(Bamber, 1975). By using the rank-based formulation of AUC we
can avoid setting different probability thresholds to generate the
ROC curve and avoid the problem raised by Hand. Let n0 ¼ jY0j
be the number of genuine transactions, and n1 ¼ jY1j be the num-
ber of fraudulent transactions. Let gi ¼ p̂0ðxi0Þ be the estimated

probability of belonging to the genuine class for the ith transaction
in fY0g, for i ¼ 1; . . . ;n0. Define fi ¼ p̂0ðxi1Þ similarly for the n1

fraudulent transactions. Then fg1; . . . ; gn0
g and ff1; . . . ; fn1g are sam-

ples from the g and f distributions. Rank the combined set of values
g1; . . . ; gn0

; f1; . . . ; fn1 in increasing order and let qi be the rank of the
ith genuine transaction. There are ðqi � iÞ fraudulent transactions
with estimated probabilities of belonging to class 0 which are
smaller than that of the ith genuine transaction (Hand & Till,
2001). Summing over the 0 class, we see that the total number of
pairs of transactions, one from class 0 and one from class 1, in
which the fraudulent transaction has smaller estimated probability
of belonging to class 0 than does the fraudulent transaction, isXn0

i¼0

ðqi � iÞ ¼
Xn0

i¼0

qi �
Xn0

i¼0

i ¼ R0 � n0ðn0 þ 1Þ=2

where R0 ¼
Pn0

i¼0qi. Since there are n0n1 such pairs of transactions
altogether, our estimate of the probability that a randomly chosen
fraudulent transaction has a lower estimated probability of belong-
ing to class 0 than a randomly chosen genuine transaction is

Â ¼ R0 � n0ðn0 þ 1Þ=2
n0n1

Â gives an estimation of AUC that avoids errors introduced by
smoothing procedures in the ROC curve and that is threshold-free
(Hand & Till, 2001).

5.2. Detection

The performance of a detection task (like fraud detection) is not
necessarily well described in terms of classification (Fan & Zhu,
2011). In a detection problem what matters most is whether the
algorithm can rank the few useful items (e.g. frauds) ahead of
the rest. In a scenario with limited resources, fraud investigators
cannot revise all transactions marked as fraudulent from a classifi-
cation algorithm. They have to put their effort into investigating
the transactions with the highest risk of fraud, which means that
the detection system is asked to return the transactions ranked
by their posteriori fraud probability. The goal then is not only to
predict accurately each class, but to return a correct rank of the
minority classes.

In this context a good detection algorithm should be able to give
a high rank to relevant items (frauds) and low score to non-rele-
vant. Fan and Zhu (2011) consider the average precision (AP) as
the correct measure for a detection task. Let p be the number of po-
sitive (fraud) case in the original dataset. Out of the t% top-ranked
candidates, suppose hðtÞ are truly positive (hðtÞ <¼ t). We can then
define recall as RðtÞ ¼ hðtÞ=p and precision as PðtÞ ¼ hðtÞ=t. Then
PðtrÞ and RðtrÞ is the precision and recall of the rth ranked observa-
tion. The formula for calculating the average precision is:

AP ¼
XN

r¼1

PðtrÞDRðtrÞ
where DRðtrÞ ¼ RðtrÞ � Rðtr�1Þ and N is the total number of observa-
tion in the dataset. From the definition of RðtrÞ we have:

DRðtrÞ ¼
hðtrÞ � hðtr�1Þ

p
¼

1
p if the the rth is fraudulent
0 if the the rth is genuine

(
An algorithm ‘‘A’’ is superior to an algorithm ‘‘B’’ only if it de-

tects the frauds before algorithm ‘‘B’’. The better the rank, the
greater the AP. The optimal algorithm that ranks all the frauds
ahead of the legitimates has average precision of 1.

In detection teams like the one of our industrial partner, each
time a fraud alert is generated by the detection system, it has to
be checked by investigators before proceeding with actions (e.g.
customer contact or card stop). Given the limited number of inves-
tigators it is possible to verify only a limited number of alerts.
Therefore it is crucial to have the best ranking within the maxi-
mum number a of alerts that they can investigate. In this setting
it is important to have the highest Precision within the first a
alerts.

In the following we will denote as PrecisionRank the Precision
within the a observations with the highest rank.
6. Strategies for incremental learning with unbalanced fraud
data

The most conventional way to deal with sequential fraud data is
to adopt a static approach (Fig. 1) which creates once in a while a
classification model and uses it as a predictor during a long hori-
zon. Though this approach reduces the learning effort, its main
problem resides in the lack of adaptivity which makes it insensitive
to any change of distribution in the upcoming chunks.

On the basis of the state-of-the-work described in Section 3.3, it
is possible to conceive two alternative strategies to address both
the incremental and the unbalanced nature of the fraud detection
problem.

The first approach, denoted as the updating approach and illus-
trated in Fig. 2, is inspired to Wang, Fan, Yu, and Han (2003). It uses
a set of M models and a number K of chunks to train each model.
Note that for M > 1 and K > 1 the training sets of the M models
are overlapping. This approach adapts to changing environment
by forgetting chunks at a constant rate. The last M models are
stored and used in a weighted ensemble of models EM . Let
PrecisionRankm denote the predictive accuracy measured in terms
of PrecisionRank on the last (testing) chunk of the mth model.
The ensemble EM is defined as the linear combination of all the
M models hm:

EM ¼
XM

m¼1

wmhm

where

wm ¼
PrecisionRankm � PrecisionRankmin

PrecisionRankmax � PrecisionRankmin

PrecisionRankmin ¼min
m2M
ðPrecisionRankmÞ

PrecisionRankmax ¼max
m2M
ðPrecisionRankmÞ

The second approach denoted as the forgetting genuine approach
and illustrated in Fig. 3 is inspired to Gao et al.’s work. In order to
mitigate the unbalanced effects, each time a new chunk is avail-
able, a model is learned on the genuine transactions of the previous
Kgen chunks and all past fraudulent transactions. Since this ap-
proach leads to training sets which grow in size over the time, a
maximum training size is set to avoid overloading. Once this size

Fig. 1. Static approach: a model is trained on K ¼ 3 chunks and used to predict future chunks.

Fig. 2. Updating approach for K ¼ 3 and M ¼ 4. For each new chunk a model is
trained on the K latest chunks. Single models are used to predict the following
chunk or can be combined into an ensemble.

A. Dal Pozzolo et al. / Expert Systems with Applications 41 (2014) 4915–4928 4919
is reached older observations are removed in favor of the more re-
cent ones. An ensemble of models is obtained by combining the
last M models as in the update approach.

Note that in all these approaches (including the static one), a
balancing technique (Section 3.2) can be used to reduce the skew-
ness of the training set (Fig. 4).

In Table 2 we have summarised the strengths and weaknesses
of the incremental approaches presented. The Static strategy has
the advantage of being fast as the training of the model is done
only once, but this does not return a model that follows the
changes in the distribution of the data. The other two approaches
on the contrary can adapt to concept drift. They differ essentially
in the way the minority class is accumulated in the training
chunks. The Forget strategy propagates instances between chunks
leading to bigger training sets and computational burden.
7. Experimental assessment

In this section we perform an extensive experimental assess-
ment on the basis of real data (Section 7.1) in order to address
common issues that the practitioner has to solve when facing large
credit card fraud datasets (Section 7.2).
7.1. Dataset

The credit card fraud dataset was provided by a payment
service provider in Belgium. It contains the logs of a subset of
transactions from the first of February 2012 to the twentieth of
May 2013 (details in Table 3). The dataset was divided in daily
chunks and contained e-commerce fraudulent transactions.

The original variables included the transaction amount, point of
sale, currency, country of the transaction, merchant type and many
others. However the original variables do not explain card holder
behaviour. Aggregated variables are added to the original ones
(see Section 4) in order to profile the user behaviour. For example
the transaction amount and the card ID is used to compute the
average expenditure per week and per month of one card, the dif-
ference between the current and previous transaction and many
others. For each transaction and card we took 3 months
(H = 90 days) of previous transactions to compute the aggregated
variable. Therefore the weekly average expenditure for one card
is the weekly average of the last 3 months.

This dataset is strongly unbalanced (the percentage of fraudu-
lent transactions is lower than 0.4%) and contains both categorical
and continuous variables. In what follow we will consider that
chunks contain sets of daily transactions, where the average trans-
actions per chunk is 5218.

7.2. Learned lessons

Our experimental analysis allows to provide some answers to
the most common questions of credit card fraud detection. The
questions and the answers based on our experimental findings
are detailed below.

7.2.1. Which algorithm and which training size is recommended in
case of a static approach?

The static approach (described in Section 6) is one of the most
commonly used by practitioners because of its simplicity and
rapidity. However, open questions remain about which learning
algorithm should be used and the consequent sensitivity of the
accuracy to the training size. We tested three different supervised
algorithms: Random Forests (RF), Neural Network (NNET) and
Support Vector Machine (SVM) provided by the R software
(Development Core Team, 2011). We used R version 3.0.1 with
packages randomForest (Liaw & Wiener, 2002), e1071 (Meyer,
Dimitriadou, Hornik, Weingessel, & Leisch, 2012), unbalanced
(Pozzolo, 2014) and MASS (Venables & Ripley, 2002).

In order to assess the impact of the training set size (in terms of
days/chunks) we carried out the predictions with different

Fig. 3. Forgetting genuine approach: for each new chunk a model is created by keeping all previous fraudulent transactions and a small set of genuine transactions from the
last 2 chunks (Kgen ¼ 2). Single models are used to predict the following chunk or can be combined into an ensemble (M ¼ 4).

Fig. 4. A balancing technique is used to reduce the skewness of the training set
before learning a model.

Table 3
Fraudulent dataset.

Ndays Nvar Ntrx Period

422 45 2202228 1Feb12–20May13

4920 A. Dal Pozzolo et al. / Expert Systems with Applications 41 (2014) 4915–4928
windows (K = 30, 60 and 90). All training sets were rebalanced
using undersampling at first (50% fraudulent, 50% genuine).

All experiments are replicated five times to reduce the variance
caused by the sampling implicit in unbalanced techniques. Fig. 5
shows the sum of the ranks from the Friedman test (Friedman,
1937) for each strategy in terms of AP, AUC and PrecisionRank.
For each chunk, we rank the strategies from the least to the best
performing. Then we sum the ranks over all chunks. More formally,
let rs;k 2 f1; . . . ; Sg be the rank of strategy s on chunk k and S be the
number of strategies to compare. The strategy with the highest
accuracy in k has rs;k ¼ S and the one with the lowest has rs;k ¼ 1.

Then the sum of ranks for the strategy s is defined as
PK

k¼1rk;s,
Table 2
Strengths and weaknesses of the incremental approaches.

Approach Strengths

Static – Speed
Update – No instances propagation

- Adapts to changing distribution
Forget – Accumulates minority instances faster

- Adapts to changing distribution
where K is the total number of chunks. The higher the sum, the high-
er is the number of times that one strategy is superior to the others.
The white bars denote models which are significantly worse than the
best (paired t-test based on the ranks of each chunk).

The strategy names follow a structure built on the following
options:

� Algorithm used (RF, SVM, NNET).
� Sampling method (Under, SMOTE, EasyEnsemble).
� Model update frequency (One, Daily, 15 days, Weekly).
� Number of models in the ensemble (M).
� Incremental approach (Static, Update, Forget).
� Incremental parameter (K;Kgen).

Then the strategy options are concatenated using the dot as
separation point (e.g. RF.Under.Daily.10M.Update.60K).

In both datasets, Random Forests clearly outperforms its com-
petitors and, as expected, accuracy is improved by increasing the
training size (Fig. 5). Because of the significative superiority of Ran-
dom Forests with respect to the other algorithms, in what follows
we will limit to consider only this learning algorithm.
7.2.2. Is there an advantage in updating models?
Here we assess the advantage of adopting the update approach

described in Section 6. Fig. 6 reports the results for different values
of K and M.
Weaknesses

– No adaptation to changing distributions
– Need several chunks for the minority class

– Instances propagation

NNET.Under.One.1M.Static.60K

SVM.Under.One.1M.Static.60K

NNET.Under.One.1M.Static.90K

SVM.Under.One.1M.Static.90K

RF.Under.One.1M.Static.30K

RF.Under.One.1M.Static.60K

RF.Under.One.1M.Static.90K

0 500 1000 1500

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AP

SVM.Under.One.1M.Static.60K

SVM.Under.One.1M.Static.90K

NNET.Under.One.1M.Static.60K

NNET.Under.One.1M.Static.90K

RF.Under.One.1M.Static.30K

RF.Under.One.1M.Static.60K

RF.Under.One.1M.Static.90K

0 500 1000 1500

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AUC

NNET.Under.One.1M.Static.60K

SVM.Under.One.1M.Static.60K

NNET.Under.One.1M.Static.90K

SVM.Under.One.1M.Static.90K

RF.Under.One.1M.Static.30K

RF.Under.One.1M.Static.60K

RF.Under.One.1M.Static.90K

0 500 1000 1500

Sum of the ranks

Best significant
FALSE
TRUE

Metric: PrecisionRank

Fig. 5. Comparison of static strategies using sum of ranks in all chunk.

A. Dal Pozzolo et al. / Expert Systems with Applications 41 (2014) 4915–4928 4921
The strategies are called daily if a model is built every day,
weekly if once a week or 15days if every 15 days. We compare
ensemble strategies (M > 1) with models built on single chunks
(K ¼ 1) against single models strategies (M ¼ 1) using several
chunks in the training (K > 1).

For all metrics, the best strategy is RF.Under.Daily.5M.Upda-
te.90K. It creates a new model at each chunk using previous
90 days (K ¼ 90) for training and keeps the last 5 models created
(M ¼ 5) for predictions. In the case of AP however this strategy is
not statistically better than the ensemble approaches ranked as
second.

For all metrics, the strategies that use only the current chunk to
build a model (K ¼ 1) are coherently the worst. This confirms the
result of previous analysis showing that a too short window of data

4922 A. Dal Pozzolo et al. / Expert Systems with Applications 41 (2014) 4915–4928
(and consequently a very small fraction of frauds) is insufficient to
learn a reliable model.

When comparing the update frequency of the models using the
same number of chunks for training (K ¼ 90), daily update is rank-
ing always better than weekly and 15days. This confirms the intui-
tion that fraud distribution is always evolving and therefore it is
better to update the models as soon as possible.
RF.Under.Daily.90M.Update.1K

RF.Under.Daily.60M.Update.1K

RF.Under.Daily.15M.Update.1K

RF.Under.Daily.30M.Update.1K

RF.Under.Daily.1M.Update.30K

RF.Under.15days.1M.Update.90K

RF.Under.Weekly.1M.Update.90K

RF.Under.Daily.1M.Update.60K

RF.Under.Daily.1M.Update.90K

RF.Under.Daily.30M.Update.90K

RF.Under.Daily.15M.Update.90K

RF.Under.Daily.5M.Update.90K

0 1

Su

RF.Under.Daily.90M.Update.1K

RF.Under.Daily.60M.Update.1K

RF.Under.Daily.15M.Update.1K

RF.Under.Daily.30M.Update.1K

RF.Under.Daily.1M.Update.30K

RF.Under.15days.1M.Update.90K

RF.Under.Daily.1M.Update.60K

RF.Under.Weekly.1M.Update.90K

RF.Under.Daily.1M.Update.90K

RF.Under.Daily.30M.Update.90K

RF.Under.Daily.15M.Update.90K

RF.Under.Daily.5M.Update.90K

0 1

Su

RF.Under.Daily.90M.Update.1K

RF.Under.Daily.60M.Update.1K

RF.Under.Daily.15M.Update.1K

RF.Under.Daily.30M.Update.1K

RF.Under.Daily.1M.Update.30K

RF.Under.15days.1M.Update.90K

RF.Under.Daily.1M.Update.60K

RF.Under.Weekly.1M.Update.90K

RF.Under.Daily.1M.Update.90K

RF.Under.Daily.30M.Update.90K

RF.Under.Daily.15M.Update.90K

RF.Under.Daily.5M.Update.90K

0 500

Su

Me

Fig. 6. Comparison of update strategies
7.2.3. Retaining old genuine transactions together with old frauds is
beneficial?

This section assesses the accuracy of the forgetting approach
described in Section 6 whose rationale is to avoid the discard of
old fraudulent observations.

Accumulating old frauds leads to less unbalanced chunks. In
order to avoid having chunks where the accumulated frauds
000 2000

m of the ranks

Best significant
FALSE
TRUE

Metric: AP

000 2000

m of the ranks

Best significant
FALSE
TRUE

Metric: AUC

1000 1500 2000 2500

m of the ranks

Best significant
FALSE
TRUE

tric: PrecisionRank

using sum of ranks in all chunks.

A. Dal Pozzolo et al. / Expert Systems with Applications 41 (2014) 4915–4928 4923
outnumber the genuine transactions, two options are available: (i)
forgetting some of the old frauds (ii) accumulating old genuine
transactions as well. In the first case when the accumulated frauds
represent 40% of the transaction, new frauds replace old frauds as
in Gao, Ding, Fan, Han, and Yu (2008). In the second case we accu-
mulate genuine transactions from previous Kgen chunks, where Kgen

defines the number of chunks used (see Fig. 3).
RF.Under.Daily.1M.Forget.0Kgen

RF.Under.Daily.30M.Forget.30Kgen

RF.Under.Daily.1M.Forget.90Kgen

RF.Under.Daily.1M.Forget.60Kgen

RF.Under.Daily.1M.Forget.30Kgen

RF.Under.Daily.1M.Forget.15Kgen

RF.Under.Daily.15M.Forget.30Kgen

RF.Under.Daily.10M.Forget.30Kgen

RF.Under.Daily.5M.Forget.30Kgen

0 1

S

RF.Under.Daily.1M.Forget.0Kgen

RF.Under.Daily.1M.Forget.15Kgen

RF.Under.Daily.30M.Forget.30Kgen

RF.Under.Daily.1M.Forget.30Kgen

RF.Under.Daily.15M.Forget.30Kgen

RF.Under.Daily.10M.Forget.30Kgen

RF.Under.Daily.5M.Forget.30Kgen

RF.Under.Daily.1M.Forget.60Kgen

RF.Under.Daily.1M.Forget.90Kgen

0 1

S

RF.Under.Daily.1M.Forget.0Kgen

RF.Under.Daily.30M.Forget.30Kgen

RF.Under.Daily.1M.Forget.15Kgen

RF.Under.Daily.15M.Forget.30Kgen

RF.Under.Daily.1M.Forget.30Kgen

RF.Under.Daily.10M.Forget.30Kgen

RF.Under.Daily.1M.Forget.90Kgen

RF.Under.Daily.1M.Forget.60Kgen

RF.Under.Daily.5M.Forget.30Kgen

0

S

M

Fig. 7. Comparison of forgetting strategi
Fig. 7 shows the sum of ranks for different strategies where the
genuine transactions are taken from a different number of days
(Kgen). The best strategy for AP and PrecisionRank uses an ensemble
of 5 models for each chunk (M ¼ 5) and 30 days for genuine
transactions (Kgen ¼ 30). The same strategy ranks third in terms
of AUC and is significantly worse than the best. To create ensem-
bles we use a time-based array of models of fixed size M, which
000 2000 3000

um of the ranks

Best significant
FALSE
TRUE

Metric: AP

000 2000 3000

um of the ranks

Best significant
FALSE
TRUE

Metric: AUC

1000 2000

um of the ranks

Best significant
FALSE
TRUE

etric: PrecisionRank

es using sum of ranks in all chunks.

4924 A. Dal Pozzolo et al. / Expert Systems with Applications 41 (2014) 4915–4928
means that when the number of models available is greater than
M, the most recent in time model replaces the Mth model in the ar-
ray removing the oldest model in the ensemble.

In general we see better performances when Kgen increase from
0 to 30 and only in few cases Kgen > 30 leads to significantly better
accuracy. Note that in all our strategies after selecting the observa-
tions to include in the training sets we use undersampling to make
sure we have the two classes equally represented.
RF.Under.One.1M.Static.90K

RF.SMOTE.One.1M.Static.90K

RF.EasyEnsemble.One.1M.Static.90K

RF.Under.Daily.1M.Update.90K

RF.Under.Daily.1M.Forget.90Kgen

RF.EasyEnsemble.Daily.1M.Update.90K

RF.SMOTE.Daily.1M.Forget.90Kgen

RF.EasyEnsemble.Daily.1M.Forget.90Kgen

RF.SMOTE.Daily.1M.Update.90K

0

RF.SMOTE.One.1M.Static.90K

RF.Under.One.1M.Static.90K

RF.EasyEnsemble.One.1M.Static.90K

RF.Under.Daily.1M.Update.90K

RF.SMOTE.Daily.1M.Forget.90Kgen

RF.Under.Daily.1M.Forget.90Kgen

RF.SMOTE.Daily.1M.Update.90K

RF.EasyEnsemble.Daily.1M.Update.90K

RF.EasyEnsemble.Daily.1M.Forget.90Kgen

0

RF.Under.One.1M.Static.90K

RF.SMOTE.One.1M.Static.90K

RF.EasyEnsemble.One.1M.Static.90K

RF.Under.Daily.1M.Update.90K

RF.Under.Daily.1M.Forget.90Kgen

RF.SMOTE.Daily.1M.Forget.90Kgen

RF.EasyEnsemble.Daily.1M.Update.90K

RF.EasyEnsemble.Daily.1M.Forget.90Kgen

RF.SMOTE.Daily.1M.Update.90K

0

Fig. 8. Comparison of different balancing techniques
7.2.4. Do balancing techniques have an impact on accuracy?
So far we considered exclusively undersampling as balancing

technique in our experiments. In this section we assess the impact
of using alternative methods like SMOTE and EasyEnsemble.
Experimental results (Fig. 8) show that they both over-perform
undersampling.

In our datasets, the number of frauds is on average 0.4% of all
transactions in the chunk. Undersampling randomly selects a
500 1000 1500

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AP

500 1000 1500

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AUC

500 1000 1500

Sum of the ranks

Best significant
FALSE
TRUE

Metric: PrecisionRank

and strategies using sum of ranks in all chunks.

A. Dal Pozzolo et al. / Expert Systems with Applications 41 (2014) 4915–4928 4925
number of genuine transactions equal to the number of frauds,
which means removing about 99.6% of the genuine transactions
in the chunk. EasyEnsemble is able to reduce the variance of under-
sampling by using several sub-models for each chunk, while
SMOTE creates new artificial fraudulent transactions. In our exper-
iments we used 5 sub-models in EasyEnsemble. For all balancing
techniques, between the three approaches presented in Section 6,
the static approach is consistently the worse.

In Fig. 9 we compare the previous strategies in terms of average
prediction time over all chunks. SMOTE is computationally heavy
since it consists in oversampling, leading to bigger chunk sizes.
EasyEnsemble replicates undersampling and learns from several
sub-chunks. This gives higher computational time than undersam-
pling. Between the different incremental approaches, static has the
lowest time as the model is learnt once and no retrained. Forget
strategy has the highest prediction time over all balancing meth-
ods. This is expected since it retains old transactions to deal with
unbalanced chunks.
7.2.5. Overall, which is the best strategy?
The large number of possible alternatives (in terms of learning

classifier, balancing technique and incremental learning strategy)
require a joint assessment of several combination in order to come
up with a recommended approach. Fig. 10 summaries the best
strategies in terms of different metrics. The combinations of Easy-
Ensemble with forgetting emerge as best for all metrics. SMOTE
with update is not significantly worse of the best for AP and Preci-
sionRank, but it is not ranking well in terms of AUC. The fact that
within the best strategies we see different balancing techniques
confirms that in online learning when the data is unbalanced, the
adopted balancing strategy may play a major role. As expected
EasyEnsemble S

0

200

400

D
ai

ly
.1

M
.F

or
ge

t.9
0K

ge
n

D
ai

ly
.1

M
.U

pd
at

e.
90

K
O

ne
.1

M
.S

ta
tic

.9
0K

D
ai

ly
.1

M
.F

or
ge

t.9
0K

ge
n

D
ai

ly
.1

M
.U

pd
a

St

C
om

pu
ta

tio
na

l t
im

e

Fig. 9. Comparison of different balancing techniques and strategies in terms of average pr
G5 blades with 2x AMD Opteron 2.4 GHz, 4 cores each and 32 GB DDR3 RAM.
the static approach ranks low in Figs. 10 as it is not able to adapt
to the changing distribution. The forgetting approach is signifi-
cantly better than update for EasyEnsemble, while SMOTE gives
better ranking with update.

It is worth notice that strategies which combines more than one
model (M > 1) together with undersampling are not superior to
the predictions with a single model and EasyEnsemble. EasyEn-
semble learns from different samples of the majority class, which
means that for each chunk different concepts of the majority class
are learnt.
8. Future work

Future work will focus on the automatic selection of the best
unbalanced technique in the case of online learning. Dal Pozzolo,
Caelen, Waterschoot, and Bontempi (2013) recently proposed to
use a F-race (Birattari, Stützle, Paquete, & Varrentrapp, 2002) algo-
rithm to automatically select the correct unbalanced strategy for a
given dataset. In their work a cross validation is used to feed the
data into the race. A natural extension of this work could be the
use of racing in incremental data where the data fed into the race
comes from new chunks in the stream.

Throughout our paper we used only data driven techniques to
deal with the unbalanced problem. HDDT (Cieslak & Chawla,
2008) is a decision tree that uses Hellinger distance (Hellinger,
1909) as splitting criteria that is able to deal with skewed distribu-
tion. With HDDT, balancing method are not longer needed before
training. The use of such algorithm could remove the need of posi-
tive instances propagation between chunks to fight the unbalanced
problem.
MOTE Under

te
.9

0K
O

ne
.1

M
.S

ta
tic

.9
0K

D
ai

ly
.1

M
.F

or
ge

t.9
0K

ge
n

D
ai

ly
.1

M
.U

pd
at

e.
90

K
O

ne
.1

M
.S

ta
tic

.9
0K

rategy

ediction time (in seconds) over all chunks. Experiments run on a HP ProLiant BL465c

NNET.Under.One.1M.Static.60K
SVM.Under.One.1M.Static.60K

NNET.Under.One.1M.Static.90K
NNET.Under.One.1M.Static.120K

SVM.Under.One.1M.Static.90K
SVM.Under.One.1M.Static.120K

RF.Under.One.1M.Static.30K
RF.Under.One.1M.Static.60K

RF.SMOTE.One.1M.Static.90K
RF.Under.One.1M.Static.90K

RF.EasyEnsemble.One.1M.Static.90K
RF.Under.One.1M.Static.120K

RF.Under.15days.1M.Update.90K
RF.Under.Weekly.1M.Update.90K

RF.Under.Daily.1M.Update.90K
RF.Under.Daily.1M.Forget.90Kgen

RF.Under.Daily.30M.Forget.30Kgen
RF.Under.Daily.30M.Update.90K
RF.Under.Daily.15M.Update.90K

RF.Under.Daily.5M.Update.90K
RF.Under.Daily.15M.Forget.30Kgen
RF.Under.Daily.10M.Forget.30Kgen

RF.EasyEnsemble.Daily.1M.Update.90K
RF.SMOTE.Daily.1M.Forget.90Kgen

RF.Under.Daily.5M.Forget.30Kgen
RF.SMOTE.Daily.1M.Update.90K

RF.EasyEnsemble.Daily.1M.Forget.90Kgen

0 1000 2000 3000 4000

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AP

SVM.Under.One.1M.Static.60K
SVM.Under.One.1M.Static.120K
SVM.Under.One.1M.Static.90K

NNET.Under.One.1M.Static.60K
NNET.Under.One.1M.Static.90K

NNET.Under.One.1M.Static.120K
RF.Under.One.1M.Static.30K
RF.Under.One.1M.Static.60K

RF.SMOTE.One.1M.Static.90K
RF.Under.One.1M.Static.90K

RF.EasyEnsemble.One.1M.Static.90K
RF.Under.Daily.30M.Forget.30Kgen

RF.Under.One.1M.Static.120K
RF.Under.Daily.15M.Forget.30Kgen

RF.Under.15days.1M.Update.90K
RF.Under.Daily.10M.Forget.30Kgen
RF.Under.Daily.5M.Forget.30Kgen
RF.Under.Weekly.1M.Update.90K

RF.SMOTE.Daily.1M.Forget.90Kgen
RF.Under.Daily.1M.Update.90K

RF.Under.Daily.30M.Update.90K
RF.Under.Daily.1M.Forget.90Kgen
RF.SMOTE.Daily.1M.Update.90K
RF.Under.Daily.15M.Update.90K

RF.Under.Daily.5M.Update.90K
RF.EasyEnsemble.Daily.1M.Update.90K

RF.EasyEnsemble.Daily.1M.Forget.90Kgen

0 1000 2000 3000 4000

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AUC

NNET.Under.One.1M.Static.60K
SVM.Under.One.1M.Static.60K

NNET.Under.One.1M.Static.90K
SVM.Under.One.1M.Static.90K

NNET.Under.One.1M.Static.120K
SVM.Under.One.1M.Static.120K

RF.Under.One.1M.Static.30K
RF.Under.One.1M.Static.60K

RF.SMOTE.One.1M.Static.90K
RF.Under.One.1M.Static.90K

RF.EasyEnsemble.One.1M.Static.90K
RF.Under.One.1M.Static.120K

RF.Under.15days.1M.Update.90K
RF.Under.Daily.30M.Forget.30Kgen

RF.Under.Weekly.1M.Update.90K
RF.Under.Daily.15M.Forget.30Kgen
RF.Under.Daily.10M.Forget.30Kgen

RF.Under.Daily.1M.Update.90K
RF.Under.Daily.30M.Update.90K

RF.SMOTE.Daily.1M.Forget.90Kgen
RF.Under.Daily.5M.Forget.30Kgen
RF.Under.Daily.1M.Forget.90Kgen

RF.Under.Daily.15M.Update.90K
RF.Under.Daily.5M.Update.90K

RF.EasyEnsemble.Daily.1M.Update.90K
RF.SMOTE.Daily.1M.Update.90K

RF.EasyEnsemble.Daily.1M.Forget.90Kgen

0 1000 2000 3000 4000

Sum of the ranks

Best significant
FALSE
TRUE

Metric: PrecisionRank

Fig. 10. Comparison of all strategies using sum of ranks in all chunks.

4926 A. Dal Pozzolo et al. / Expert Systems with Applications 41 (2014) 4915–4928

A. Dal Pozzolo et al. / Expert Systems with Applications 41 (2014) 4915–4928 4927
In our work the combination of models in an ensemble is based
on the performance of each model in the testing chunk. Several
other methods (Kolter & Maloof, 2003; Hoens, Chawla, & Polikar,
2011; Lichtenwalter & Chawla, 2010) have been proposed to com-
bine models in presence of concept drift. In future work it would be
interesting to test some of these methods and compare it to our
framework.

In this manuscript we assumed that there is a single concept to
learn for the minority class. However, as frauds are different from
each other we could distinguish several sub-concept within the
positive class. Hoens et al. (2011) suggest to use Naive Bayes to
retain old positive instances that come from the same sub-concept.
REA (Chen & He, 2011) and SERA (Chen et al., 2009) proposed by
Chen and He propagate to the last chunk only minority class that
belong to the same concept using Mahalanobis distance and a
k-nearest neighbors algorithm. Future work should take into con-
sideration the possibility of having several minority concepts.
9. Conclusion

The need to detect fraudulent patterns in huge amount of data
demands the adoption of automatic methods. The scarcity of public
available dataset in credit card transactions gives little chance to
the community to test and asses the impact of existing techniques
on real data. The goal of our work it to give some guidelines to
practitioners on how to tackle the detection problem.

The paper presents the fraud detection problem and proposes
AP, AUC and PrecisonRank as correct performance measures for a
fraud detection task. Frauds occur rarely compared to the total
amount of transactions. As explained in Section 5.1,, standard clas-
sification metrics such as Accuracy are not suitable for unbalanced
problems. Moreover, the goal of detection is giving the investiga-
tors the transactions with the highest fraud risk. For this reason
we argue that having a good ranking of the transactions by their
fraud probability is more important than having transactions
correctly classified.

Credit card fraud detection relies on the analysis of recorded
transactions. However a single transaction information is not con-
sidered sufficient to detect a fraud occurrence (Bolton & Hand,
2001) and the analysis has to take into consideration the card-
holder behaviour. In this paper we have proposed a way to include
cardholder information into the transaction by computing aggre-
gate variables on historical transaction of the same card.

As new credit-card transactions keep arriving, the detection
system has to process them as soon as they arrive incrementally
and avoid retaining in memory too many old transactions. Fraud
types are in continuous evolution and detection has to adapt to
fraudsters. Once a fraud is well detected, the fraudster could
change his habits and find another way to fraud. Adaptive schemes
are therefore required to deal with non-stationary fraud dynamics
and discover potentially new fraud mechanisms by itself. We com-
pare three alternative approaches (static, update and forgetting) to
learn from unbalanced and non-stationary credit card data
streams.

Fraud detection is a highly unbalanced problem where the
number of genuine transactions far outnumbers the fraudulent
ones. In the static learning setting a wide range of techniques have
been proposed to deal with unbalanced dataset. In incremental
learning however few attempts have tried to deal with unbalanced
data streams (Gao et al., 2007; Hoens et al., 2012; Ditzler, Polikar, &
Chawla, 2010). In these works, the most common balancing
technique consists in undersampling the majority class in order
to reduce the skewness of the of the chunks.

The best technique for unbalanced data may depend on several
factors such as (i) data distribution (ii) classifier used (iii)
performance measure adopted, etc. (Dal Pozzolo et al., 2013). In
our work we adopted two alternatives to undersampling: SMOTE
and EasyEnsemble. In particular we show that they are both able
to return higher accuracies. Our framework can be easily extended
to include other data-level balancing techniques.

The experimental part has shown that in online learning, when
the data is skewed towards one class it is important maintaining
previous minority examples in order to learn a better separation
of two classes. Instance propagation from previous chunks has
the effect of increasing the minority class in the current chunk,
but it is of limited impact given the small number of frauds. The
update and forgetting approaches presented in Section 6 differ
essentially in the way the minority class is oversampled in the cur-
rent chunk. We tested several ensemble and single models strate-
gies using different number of chunks for training. In general we
see that models trained on several chunks have better accuracy
than single chunk models. Multi-chunks models learn on overlap-
ping training sets, when this happens single models strategies can
beat ensembles.

Our framework addresses the problem of non-stationary in data
streams by creating a new model every time a new chunk is avail-
able. This approach has showed better results than updating the
models at a lower frequency (weekly or every 15days). Updating
the models is crucial in a non-stationary environments, this intui-
tion is confirmed by the bad results of the static approach. In our
dataset, overall we saw Random Forest beating Neural Network
and Support Vector Machine. The final best strategy implemented
the forgetting approach together with EasyEnsemble and daily
update.
References

Bamber, D. (1975). The area above the ordinal dominance graph and the area below
the receiver operating characteristic graph. Journal of Mathematical Psychology,
12, 387–415.

Batista, G., Carvalho, A., & Monard, M. (2000). Applying one-sided selection to
unbalanced datasets. MICAI 2000: Advances in Artificial Intelligence, 315–325.

Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for
configuring metaheuristics. In Proceedings of the genetic and evolutionary
computation conference (pp. 11–18).

Bolton, R. J., & Hand, D. J. (2001). Unsupervised profiling methods for fraud
detection. Credit Scoring and Credit Control, VII, 235–255.

Bolton, R., & Hand, D. (2002). Statistical fraud detection: A review. Statistical Science,
235–249.

Brause, R., Langsdorf, T., & Hepp, M. (1999). Neural data mining for credit card fraud
detection. In Tools with artificial intelligence, 1999. Proceedings (pp. 103–106).
IEEE.

Chan, P., Fan, W., Prodromidis, A., & Stolfo, S. (1999). Distributed data mining in
credit card fraud detection. Intelligent Systems and their Applications, 14, 67–74.

Chawla, N. V. (2005). Data mining for imbalanced datasets: An overview. In Data
mining and knowledge discovery handbook (pp. 853–867). Springer.

Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. (2011). Smote: synthetic minority
over-sampling technique. Arxiv preprint arXiv:1106.1813.

Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Editorial: Special issue on learning
from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6, 1–6.

Chen, S., & He, H. (2009). Sera: Selectively recursive approach towards
nonstationary imbalanced stream data mining. In International joint conference
on neural networks, 2009. IJCNN 2009 (pp. 522–529). IEEE.

Chen, S., & He, H. (2011). Towards incremental learning of nonstationary
imbalanced data stream: A multiple selectively recursive approach. Evolving
Systems, 2, 35–50.

Chen, S., He, H., Li, K., & Desai, S. (2010). Musera: Multiple selectively recursive
approach towards imbalanced stream data mining. In The 2010 international
joint conference on neural networks (IJCNN) (pp. 1–8). IEEE.

Cieslak, D. A., & Chawla, N. V. (2008). Learning decision trees for unbalanced data. In
Machine learning and knowledge discovery in databases (pp. 241–256). Springer.

Clark, P., & Niblett, T. (1989). The cn2 induction algorithm. Machine Learning, 3,
261–283.

Cohen, W. W. (1995). Fast effective rule induction. In Machine learning-international
workshop then conference (pp. 115–123). Morgan Kaufmann Publishers, INC..

Dal Pozzolo, A., Caelen, O., Waterschoot, S., & Bontempi, G. (2013). Racing for
unbalanced methods selection. In Proceedings of the 14th international
conference on intelligent data engineering and automated learning, IDEAL.

Delamaire, L., Abdou, H., & Pointon, J. (2009). Credit card fraud and detection
techniques: A review. Banks and Bank Systems, 4, 57–68.

http://refhub.elsevier.com/S0957-4174(14)00089-X/h0050
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0050
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0050
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0055
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0055
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0060
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0060
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0065
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0065
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0070
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0070
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0070
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0075
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0075
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0080
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0080
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0085
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0085
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0090
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0090
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0090
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0095
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0095
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0095
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0100
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0100
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0100
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0105
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0105
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0110
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0110
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0115
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0115
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0120
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0120

4928 A. Dal Pozzolo et al. / Expert Systems with Applications 41 (2014) 4915–4928
R Development Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria, 2011.
<http://www.R-project.org/>, ISBN 3-900051-07-0.

Ditzler, G., Polikar, R., & Chawla, N. (2010). An incremental learning algorithm for
non-stationary environments and class imbalance. In 2010 20th International
conference on pattern recognition (ICPR) (pp. 2997–3000). IEEE.

Dorronsoro, J., Ginel, F., Sgnchez, C., & Cruz, C. (1997). Neural fraud detection in
credit card operations. Neural Networks, 8, 827–834.

Drummond, C., & Holte, R. (2003). C4. 5, class imbalance, and cost sensitivity: Why
under-sampling beats over-sampling. In Workshop on learning from imbalanced
datasets II. Citeseer.

Elkan, C. (2001). The foundations of cost-sensitive learning. International joint
conference on artificial intelligence (Vol. 17, pp. 973–978). Citeseer.

Fan, G., & Zhu, M. (2011). Detection of rare items with target. Statistics and Its
Interface, 4, 11–17.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit
in the analysis of variance. Journal of the American Statistical Association, 32,
675–701.

Gao, J., Ding, B., Fan, W., Han, J., & Yu, P. S. (2008). Classifying data streams with
skewed class distributions and concept drifts. Internet Computing, 12, 37–49.

Gao, J., Fan, W., Han, J., & Philip, S. Y. (2007). A general framework for mining
concept-drifting data streams with skewed distributions. In SDM.

Grossberg, S. (1988). Nonlinear neural networks: Principles, mechanisms, and
architectures. Neural Networks, 1, 17–61.

Hand, D. (2009). Measuring classifier performance: A coherent alternative to the
area under the ROC curve. Machine Learning, 77, 103–123.

Hand, D. J., & Till, R. J. (2001). A simple generalisation of the area under the roc curve
for multiple class classification problems. Machine Learning, 45, 171–186.

Hellinger, E. (1909). Neue begründung der theorie quadratischer formen von
unendlichvielen veränderlichen. Journal für die reine und Angewandte
Mathematik, 136, 210–271.

Hoens, T. R., Chawla, N. V., & Polikar, R. (2011). Heuristic updatable weighted
random subspaces for non-stationary environments. In 2011 IEEE 11th
international conference on data mining (ICDM) (pp. 241–250). IEEE.

Hoens, T. R., Polikar, R., & Chawla, N. V. (2012). Learning from streaming data with
concept drift and imbalance: An overview. Progress in Artificial Intelligence, 1,
89–101.

Holte, R. C., Acker, L. E., & Porter, B. W. (1989). Concept learning and the problem of
small disjuncts. Proceedings of the eleventh international joint conference on
artificial intelligence (Vol. 1). Citeseer.

Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic
study. Intelligent Data Analysis, 6, 429–449.

Kolter, J. Z., & Maloof, M. A. (2003). Dynamic weighted majority: A new ensemble
method for tracking concept drift. In Third IEEE international conference on data
mining, 2003. ICDM 2003 (pp. 123–130). IEEE.
Kuncheva, L. I. (2004). Classifier ensembles for changing environments. In Multiple
classifier systems (pp. 1–15). Springer.

Liaw, A., & Wiener, M. (2002). Classification and regression by randomforest. R
News, 2, 18–22.

Lichtenwalter, R. N., & Chawla, N. V. (2010). Adaptive methods for classification in
arbitrarily imbalanced and drifting data streams. In New frontiers in applied data
mining (pp. 53–75). Springer.

Liu, X., Wu, J., & Zhou, Z. (2009). Exploratory undersampling for class-imbalance
learning. Systems, Man, and Cybernetics, Part B: Cybernetics, 39, 539–550.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2012). e1071:
Misc Functions of the Department of Statistics (e1071), TU Wien, 2012. <http://
CRAN.R-project.org/package=e1071>, r package version 1.6-1.

Olshen, L., & Stone, C. (1986). Classification and regression trees. Wadsworth
International Group.

Oza, N. C. (2005). Online bagging and boosting. Systems, man and cybernetics (Vol. 3,
pp. 2340–2345). IEEE.

Pavía, J. M., Veres-Ferrer, E. J., & Foix-Escura, G. (2012). Credit card incidents and
control systems. International Journal of Information Management, 32, 501–503.

Polikar, R., Upda, L., Upda, S., Honavar, V., et al. (2001). Learn++: An incremental
learning algorithm for supervised neural networks. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 31, 497–508.

Pozzolo, A. D. (2014). unbalanced: The package implements different data-driven
method for unbalanced datasets. R package version 1.0.

Provost, F. (2000). Machine learning from imbalanced data sets 101. In Proceedings
of the AAAI’2000 workshop on imbalanced data sets.

Quah, J. T., & Sriganesh, M. (2008). Real-time credit card fraud detection using
computational intelligence. Expert Systems with Applications, 35, 1721–1732.

Quinlan, J. (1993). C4. 5: Programs for machine learning (Vol. 1). Morgan Kaufmann.
Street, W. N., & Kim, Y. (2001). A streaming ensemble algorithm (sea) for large-scale

classification. In Proceedings of the seventh ACM SIGKDD international conference
on knowledge discovery and data mining (pp. 377–382). ACM.

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (fourth ed.). 0-
387-95457-0. New York: Springer<http://www.stats.ox.ac.uk/pub/MASS4> .

Wang, H., Fan, W., Yu, P. S., & Han, J. (2003). Mining concept-drifting data streams
using ensemble classifiers. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 226–235). ACM.

Weston, D., Hand, D., Adams, N., Whitrow, C., & Juszczak, P. (2008). Plastic card
fraud detection using peer group analysis. Advances in Data Analysis and
Classification, 2, 45–62.

Whitrow, C., Hand, D. J., Juszczak, P., Weston, D., & Adams, N. M. (2009). Transaction
aggregation as a strategy for credit card fraud detection. Data Mining and
Knowledge Discovery, 18, 30–55.

Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and
hidden contexts. Machine Learning, 23, 69–101.

http://www.R-project.org/
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0125
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0125
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0125
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0130
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0130
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0135
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0135
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0135
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0140
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0140
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0145
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0145
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0150
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0150
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0150
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0155
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0155
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0160
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0160
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0165
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0165
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0170
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0170
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0175
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0175
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0175
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0180
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0180
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0180
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0185
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0185
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0185
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0190
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0190
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0190
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0195
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0195
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0200
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0200
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0200
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0205
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0205
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0210
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0210
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0215
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0215
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0215
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0220
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0220
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0225
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0225
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0230
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0230
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0235
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0235
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0235
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0240
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0240
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0245
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0250
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0250
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0250
http://www.stats.ox.ac.uk/pub/MASS4
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0265
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0265
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0265
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0270
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0270
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0270
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0275
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0275
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0275
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0280
http://refhub.elsevier.com/S0957-4174(14)00089-X/h0280

	Learned lessons in credit card fraud detection from a practitioner perspective
	1 Introduction
	2 Contributions
	3 State of the art in credit card fraud detection
	3.1 Supervised versus unsupervised detection
	3.2 Unbalanced problem
	3.3 Incremental learning

	4 Formalization of the learning problem
	5 Performance measure
	5.1 Classification
	5.2 Detection

	6 Strategies for incremental learning with unbalanced fraud data
	7 Experimental assessment
	7.1 Dataset
	7.2 Learned lessons
	7.2.1 Which algorithm and which training size is recommended in case of a static approach?
	7.2.2 Is there an advantage in updating models?
	7.2.3 Retaining old genuine transactions together with old frauds is beneficial?
	7.2.4 Do balancing techniques have an impact on accuracy?
	7.2.5 Overall, which is the best strategy?

	8 Future work
	9 Conclusion
	References

