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Abstract. We present new micropayment schemes that are more effi-
cient and user friendly than previous ones.

These schemes reduce bank processing costs by several orders of magni-
tude, while preserving a simple interface for both users and merchants.
The schemes utilize a probabilistic deposit protocol that, in some of the
schemes, may be entirely hidden from the users.

1 Introduction

A payment scheme consists of a set of protocols involving (at least) three basic
parties: the buyer or user, the merchant, and the bank. These could be individual
entities —such people, devices, computer programs— or collections of entities.!

ELECcTRONIC CHECKS. The simplest form of payment scheme is an electronic
check. Very informally, this consists of a check that is digitally signed rather
hand-signed. In essence, a user pays a merchant for a transaction by digitally
signing a piece of data that identifies the transaction (the user, the merchant, the
“merchandise,” the amount to be paid, the time, etc.) and possibly other data
(such as account and credit information). The merchant deposits an electronic
check by sending it to the bank. Having verified that the check is genuine and
that has been deposited for the first time, the bank credits the merchant with
the proper amount and charges the buyer with the same amount.

IT GOES WITHOUT SAYING. A few side details are supposed to be included in
all payment schemes discussed herein. For instance, the parties’ digital signature
capabilities may supported by digital certificates (proving that they own their
public keys, or that they are authorized to conduct electronic payments). These
certificates can be sent alongside other messages, and their current validity may
be verified before accepting an electronic payment. (See [13] for very efficient
ways to verify certificates’ current validity.)

When we say that the bank credits the merchant with $z and charges the
user with the same amount, we do not mean that these amounts are exactly
equal: the bank may deduct fees from the merchant’s credit or add fees to the

1 Of course, in a payment system there may be a plurality of users and merchants,
and there may be too a plurality of banks. Indeed, in each transaction the user may
have his own bank and the merchant his own, separate bank.



user’s charge. The bank may also impose entry or subscription fees to users and
merchants for their participation in the payment system.

A payment scheme per se does not provide the assurance that the merchant
will deliver the relevant “merchandise” (goods, services, information, etc.). Other
schemes such as that of [12] may guarantee that a “fair exchange” takes place.
Also, a payment scheme per se does not guarantee that the user has enough
money to pay. A separate mechanism may insure the merchant against this risk
(e.g., the bank may guarantee payment if the user had a valid certificate).

Anonymity is not explicitly added to our payment schemes, though it can be
added to them. 2

MICROPAYMENTS. Payment schemes that emphasize the ability to make pay-
ments of small amounts are called micropayment schemes. Several micropay-
ment schemes have been suggested, including Millicent[10] by Manasse et al.,
the Payword and MicroMint[16] schemes of Rivest and Shamir, Anderson’s Net-
Card[2] scheme, Jutla and Yung’s PayTree[7], Hauser et al.’s Micro iKP[5], the
“Micropayment Transfer Protocol (MPTP)” of the W3C [4, 18], the probabilis-
tic polling scheme[6] of Jarecki and Odlyzko, the “Electronic Lottery Ticket”
proposal[15] of Rivest, Wheeler’s similar “Transactions Usings Bets”[19], Peder-
sen’s similar scheme[14], and the related proposal for micropayments by efficient
coin-flipping by Lipton and Ostrovsky[9] (this last paper includes an excellent
survey of the field).

Applications of micropayments include paying for each web page visited, and
for each minute of music or video as it is streamed to the user.

In principle, micropayments could be implemented by electronic checks. Mer-
chant and user are otherwise engaged in the transaction, and the computation
time they may devote to digital signing is not a real problem. The real problem
lies with the bank’s processing cost of any form of payment. Indeed, it seems
likely that the cost of doing any transaction with the bank will be many times
larger than the value of the micropayment itself. For example, processing a credit
card transaction costs about 25 cents today, while a typical micropayment may
be worth 1 cent. This processing cost seems unlikely to diminish dramatically in
the near future.

Fortunately, while users and merchants are expected to be involved in every
transaction, there is no essential reason why the bank must do work propor-
tional to the number of transactions made. Micropayment schemes thus try to
aggregate many small payments into fewer, larger payments, whose processing
costs (by the bank) are relatively small.

1.1 Two Old Micropayment Schemes

Let us quickly recall two well-known micropayment schemes: (1) Rivest and
Shamir’s “PayWord” [16], and (2) Rivest’s “electronic lottery tickets as micro-

2 Payment schemes that emphasize user anonymity are often called electronic coin
schemes. See Law et al. [8] for an excellent overview of electronic coin schemes.



payments” [15]. Indeed, our proposed micropayment schemes retain some of their
ideas, and fix some of their drawbacks.

PAYWORD. Let H be a one-way function; that is, a function easy to evaluate
but hard to invert. A user computes a “H-chain” consisting of values

Lo, T1,T2y.+.,Tn

where
Z; :H($i+1) fori:O,l,...,n—l,

and commits to the entire chain by sending his signature of the root zy to the
merchant. After that, each successive payment of the user is made by releasing
the next consecutive value in the chain, which can be verified by checking that
it hashes to the previous element. This allows the merchant to conveniently
aggregate the buyer’s payments as follows. Assume that the user has made i
micropayments, and the merchants feels that, taken together, they constitute a
sizable enough macropayment. Then, the merchant can make a single deposit
for i cents by giving the bank only two values: z; and the user’s signature of zg.
The bank can verifies the user’s signature of zy and iterates H on z; i times, to
verify that this operation yields x.

PAYWORD’S PROBLEM. PayWord suffers from a main problem:

A merchant cannot aggregate micropayments of different users. Each user
has established his own H-chain with the merchant, and there is no way of
“merging” different chains. Thus, if a user spends only 1 cent with a given
merchant, to deposit that cent the merchant or the bank would lose money,
because the deposit’s processing cost will exceed the payment value.

RIVEST’S LOTTERY SCHEME. In this scheme, there is a known selection rate, s,
between 0 and 1. For each micropayment user and merchant interact according
to a pre-determined protocol so as to select it with probability s: a non-selected
micropayment is worthless and can be discarded, while a selected one can be
deposited for an amount 1/s times bigger than the originally specified amount.
For instance, if s = 1/1000 and each micropayment is for 1 cent, then on the
average, out, of 1000 micropayments, 999 will be discarded and 1 will be deposited
for 1000 cents (i-e., for $10), thus incurring only a single processing cost. This
approach minimizes processing costs, while on the average every one pays and
receives what he should.

A fast implementation of the lottery scheme also uses H-chains as in Pay-
Word. In a first step, the merchant gives the user the root w = wg of a H-chain

Wo, W1, W2y ..., Wn .

where
w; :H(wi+1) fori:O,l,...,n—l,



In a second step, the user includes w into his commitment to zg, and thus
into his commitment to his own H-chain. Assuming that the selection rate is
1/1000, then the user’s i-th is payment is selected if (z; mod 1000) is the same
as (w; mod 1000). (A mathematically rigorous version of this approach can be
found in [9].)

Note that, at the end of the selection protocol, the merchant learns whether
a given micropayment has been selected. In principle therefore, he might deny
giving the user the expected merchandise if the payment was not selected. But
this cheating possibility is not worrysome: since we are dealing with a micro-
payment, the merchandise involved may be worth 1 cent; while the merchant’s
reputation and his ability to continue to conduct business through electronic
micropayments is worth much more.

THE LOTTERY SCHEME’S PROBLEMS. The scheme suffers from two main prob-
lems:

1. Interaction. The user and the merchant must interact to select micropay-
ments. This interaction slows down the whole process and makes it imprac-
tical for some applications.

2. User risk. The scheme burdens the user with the risk that he may have to
pay more than he should. For instance, though the selection rate is 1/1000,
10 (rather than 1) of his first 1000 micropayments may be selected for a
macropayment! This may be a rare problem, because the probability of its
happening is small, and its relative impact decreases dramatically with the
number of micropayments made. Nonetheless, it may constitute a strong psy-
chological obstacle to the wide acceptance of the scheme, because ordinary
users are not accustomed to managing risk.

The lottery scheme can also be implemented using an external entity. For in-
stance, in the example above, the w; may not be committed in advance by the
merchant, but may consist of the winning numbers of the state lottery. This too,
however, poses problems. Namely, the merchant may have to store a large num-
ber of payments, because he must wait for the next lottery outcome to determine
which of them will be selected. In addition, the merchant may conspire with the
external entity against the user. For instance, he may arrange for certain values
w; to “pop-up” so as to guarantee that a given user’s payments are always se-
lected. Alternatively, the user may conspire with the external entity against the
merchant.

1.2 Three New Micropayment Schemes

We put forward three micropayment schemes that solve the above mentioned
problems.

MR1 Scheme “MR1”, presented in Section 2, improves on Rivest’s lottery
scheme by making it non-interactive while allowing the merchant to learn
immediately whether or not a check is selected for payment. We achieve non



interaction by (among other ways) properly utilizing the merchant’s public
key in the payment protocol.

MR2 Scheme “MR2”, presented in Section 3, solves the problem that prob-
abilistic schemes such as Rivest’s lottery scheme and MR1 may —by bad
luck— charge the user more than the total value of the checks he has writ-
ten. We solve this problem by modifying the charging protocol to depend
properly on the serial numbers of the user’s checks.

MR3 Scheme “MR3”, presented in Section 4, is a variant which trades off the
immediacy (for the merchant) of finding out which checks are payable in favor
of giving the bank greater control and flexibility over the deposit process.

In all our three schemes, each micropayment requires the computation of a
digital signature, just as for an electronic check. A few years ago, this compu-
tational requirement was significant. But digital signature technology has con-
tinued to improve, and signature schemes that are both more secure and sig-
nificantly faster are currently available. Moreover, the computational cost of a
public-key signature has continued to decrease due to the deployment of more
powerful processors. Furthermore, we note that the use of “on-line/off-line” dig-
ital signatures (as proposed in [3] and recently improved in [17]) may be a good
choice for micropayment schemes.? In sum, we now feel free to utilize public-key
computations even in most micropayment schemes.

2 The MR1 Scheme

In this section we improve Rivest’s lottery scheme. As before, payments will be
selected to be deposited according to a selection rate s, but the MR1 scheme
does not require interaction between user and merchant, and yet the merchant
learns right away which payments are selected.

These features make the MR1 scheme eligible for new uses. For example,
it could be used by a packet to pay for its bandwidth as it travels along a
precomputed route, where the intermediate routers have known public keys.
(Note that having the router interact with the user sending the packet is not a
realistic option!)

The idea is that when a user sends a (micro) check C to a merchant, C
will be selected for (a macro) deposit if a given property holds between C' and
a unique quantity dependent on C that is easily computable by the merchant,
but unpredictable to the user. Therefore, when the user sends a check C' to the
merchant, he has no idea whether C' will be selected for deposit (and thus the
user cannot avoid a possible deposit).

% Such digital signature are in fact computed in two steps: first an “off-line” step,
computationally more demanding but performed before the message to be signed
is chosen or available, and then a light-weight “on-line” step, performed once the
message to be signed becomes available. Thus, for example, we imagine that the
off-line step could be performed while a human user is deciding what to do next;
once she decides, the signature for the micropayment can be completed quickly.



Notice that our proposal differs significantly from Rivest’s lottery scheme not
only at an implementation level, but also at a high level. In Rivest’s case, a check
sent by the user to the merchant is not determined to be payable or unpayable.
Rather, its “payability” will be determined by the execution of the selection
protocol that ensues, and thus by the random choices that merchant and user
will make. In our case, instead, any check sent by the user to the merchant is
already “pre-selected” for payability.* In some sense, each check carries its own
special mark, “payable” or “unpayable”, so as to guarantee the following three
properties (1) the fraction of checks marked payable is approximately s, (2) the
user cannot read the mark of the checks he sends, (3) the merchant can read the
mark and can make it visible to others.

Let us first describe our preferred, practical implementation of the MR1
scheme, and then some of its variants, including a theoretical one for which a
rigorous proof of correctness could be provided.

2.1 The preferred embodiment of MR1.

PRELIMINARIES.

Let T' denote (the encoding of) a transaction. We assume that T' specifies
all quantities deemed useful—such as the user, the merchant, the bank, the
“merchandise”, the transaction time, the transaction’s (monetary) value, etc.

For simplicity, we assume that each transaction has a fixed value (equal to 1
cent) and that there is a fixed selection rate, denoted by s. (L.e., s is the fraction
of payments that is expected to be selected for deposit.)

We let F(-) denote a fixed public function that takes arbitrary bit strings as
input and returns as output a number between 0 and 1, inclusive. For example,
F might operate by taking the input string e and pre-pending a zero and a
point, and interpreting the result as a binary number, so that for example “011”
becomes “0.011” which is interpreted as the number 3/8. The function F' might
also apply a standard hash function to the input as an additional first step.

If X is a party and Y a message, we denote by SIGx (V) X’s digital signature
of Y. For simplicity, we assume that each message is one-way hashed prior to
being signed and is explicitly included in its own signature.®.

THE PREFERRED MR1 SCHEME

Set up: Each user and each merchant establishes his own public key (with the
corresponding secret key) for a secure digital signature scheme. The mer-
chant’s digital signature scheme must be deterministic.

* If you want, a check’s probability of being selected depends on choices made by the
merchant during a set-up phase —e.g., on which public signature key the merchant
actually chose.

® For example, SIGx(Y) could be implemented as (Y, SIGx(H(Y)), where H is a
fixed public one-way hash function.



Payment: A user U pays a merchant M for a transaction T' (with selection
rate s) by sending M the check C' = SIGy(T).

Check C' is actually payable if F(SIGpM(C)) < s. If C is payable, then M
sends bank B both C and SIG,(C) for deposit. (Out of courtesy, M may
inform U whether C' was payable.)

Selective Deposit: If U’s and M’s signatures are correct, and C' is a previously
undeposited payable check, then B credits M’s account with 1/s cents and
debits U’s account with the same amount (and may justify its action by
providing U with SIG (C)).

BAsiC PROPERTIES.

— The set-up phase is simple and general. There is no need of a separate set-up
for each user-merchant pair as in PayWord.

— The payment phase is non-interactive. The user simply sends a signed mes-
sage to the merchant, to which the merchant needs not to respond.

— The selection rate is s. In fact, SIGp(C) is a quantity unpredictable to U,
because U does not know M’s secret signing key. Thus, practically speaking,
even if U may control C' in any way he wants (e.g. by choosing the transaction
T), SIGp(C) will essentially be a random number. Therefore, F(SIG(C))
is a random and long enough number between 0 and 1, and thus will be less
than the selection rate s essentially for a fraction s of the checks C'.

(Note that for a reasonable selection rate, such as 1/1024, it would be suf-
ficient for F(SIGp(C)) to be 10-bit long. A typical signature is instead
hundreds of bits long, which is an “overkill.”)

— Bank B is called into action only for a fraction s of the micropayments, and
once it acts it does so only on macropayments. The merchant can immedi-
ately verify whether a check C' is payable, because he can easily evaluate
F(SIGpM(C)) and compare it to the selection rate. Thus, the every check
forwarded by the merchant to the bank is payable, and each such check re-
sults in a “macropayment” because it has a selected value of 1/s cents. (e.g.,
if s = 1000, it has a value of $10). Thus, the system generates only relatively
negligible transaction costs.

— No two parties can successfully cheat the third one. Even with B’s help, U
cannot write a check that has “less than s chance” of being payable. Indeed,
the value SIGy(C) is unpredictable to both B and U, even if they share
information about SIG ), (C") for any prior check C' and even if they jointly
choose C'. Similarly, M and B together cannot defraud U. Informally, once
the public signature key of M is chosen in the set-up stage (by M alone or by
M and B together), because the signature scheme is deterministic, there is
only one possible value SIG s (C) for every check C, and thus no amount of
conspiracy may change that value. Moreover, when M’s public key is chosen,
M and B do not know what U’s checks look like. Even if B and M were
capable of guessing or controlling which transactions U will execute, they
cannot choose M’s public key so as to guarantee that U’s checks will be



payable with probability greater than s. In fact, U’s check for a transaction
T consists of SIGy (T, and is thus unpredictable to both M and B. Finally,
notice that the bank cannot be defrauded in the sense that, each time that
B pays M, B withdraws the same amount from U’s account. (The problem
that U may be unable to pay his checks arises also for ordinary checks, and
is therefore independent of our cryptographic scheme and should be handled
as usual.)

2.2 Variants of the preferred embodiment of MR1

THEORETICAL VARIANTS. The basic scheme can be modified a bit so as to
formally achieve security.

In our analysis of the MR1 scheme, it is crucial that F(SIGy(C)) be a
(“random”) number of sufficient precision unpredictable to the user. Whether
this security condition holds may depend on the signature scheme and on the
definition of F.

For example, consider an F' that returns the binary fraction whose represen-
tation is the low-order 20 bits of its input. The security condition is immediately
true if one models digital signature schemes as random oracles; it is however
more traditional to model only one-way hash functions as random oracles. The
condition nonetheless holds if the merchant digitally signs using a suitable sig-
nature scheme such as RSA. In fact RSA is a deterministic signature scheme
and it has been proven in [1] that, relative to a randomly chosen RSA public
key of L bits, the last ¢ - log L bits of the signature of a random message are
computationally indistinguishable from a random c - log L-bit string, where ¢ is
any constant greater than 1. As a consequence of this result, if merchant M
randomly chose his RSA keys as 1024-bit long strings, then, letting ¢ = 2, the
last 20 bits of SIG(C) provide a 20-bit string Y essentially indistinguishable
from a random 20-bit string, no matter how C' was chosen. (Recall in fact that
rather than signing C' directly, merchant M actually signs H(C'). Modeling the
one-way hash function H as a random oracle, H(C') would be random even if C
were specially selected.) Notice that using even as few as 20 bits for Y enables
one to easily implement a selection rate as low as 2720 and provides sufficient
resolution for most purposes; with s = 272° selected 1-cent micropayments are
transformed into macropayments worth $10,000 each, whose processing costs
would be quite negligible.

The same crucial point can also be formally solved without recourse to any
random oracle model. Namely, it would suffice for the merchant to use a verifiable
random function (VRF) rather than an ordinary digital signature scheme. As
introduced and exemplified by Micali, Rabin and Vadhan [11], a VRF comprises
a pair of keys and a pair of algorithms: a public key PK, a matching secret key
SK, an evaluation algorithm E, and a verification algorithm V. Key PK totally
specifies a function F' (= Fp), from arbitrary bit strings to k-bit strings, such
that it is hard to compute F(z) on input  and PK. Key SK enables one to



evaluate F' easily; that is, on inputs z, PK and SK, E returns F(z) together
with a proof P, that indeed F'(x) is the correct value of F' at point . Proof P,
is accepted by V on additional inputs PK and z. The crucial property of a VRF
is that F'(z) is polynomial-time indistinguishable from a random k-bit string for
any input z for which a proof P, has not been seen. (This remains true even if
one is allowed to request and obtain F(z') and P, for any input z’ # x of his
choice.) Thus, in the MR1 scheme, the merchant can select his own PK and SK
and establish PK as his public VRF key, so that a check C' becomes payable if
Fpi(C) < s. Note that the merchant can immediately determine whether C is
payable, because he knows SK and thus easily evaluates Fpg. Moreover he can
enable the bank to verify that C' is payable by releasing the proof Pc.

As for a different technical point, the user and merchant may choose their
public signature keys by means of a mutually independent commitment scheme.

PRACTICAL VARIANTS. Different variants are possible that maintain the same
(non-interactive) spirit of the MR1 scheme. In particular,

— Time. The basic scheme allows a merchant to deposit a payable check at any
time. However, the bank may refuse to credit the merchant’s account during
the deposit phase unless he presents a payable check which has a sufficiently
correct time. (E.g., if the transaction T to which a check C' refers happened
in day ¢, then the merchant should deposit C' within the end of day ¢, or by
day 7 + 1.) This gives an extra incentive to the merchant to verify the time
accuracy of the checks he receives (which he should do anyway). Indeed, if
the time is wrong, he could refuse to provide “the merchandise” requested.
Timely deposit ensures that the user is not charged “too late,” when he has
no longer budgeted for that possible expenditure.

— Functions F and G. The functions F' and G may not be fixed, but vary. For
instance, a check or a transaction may specify which F or G should be used
with it.

— The check-payability condition, F(SIG(C)) < s, could be replaced by
F(SIGM(G(C))) < s, where G is a given function/algorithm. So, rather
than signing C' itself, the merchant may sign a quantity dependent on C
denoted by G(C). In particular, because C is U’s signature of a transaction
T, and because we assume that such a signature also specifies T', G(C) may
be a function of T" alone, for instance a substring of 7', such as T’s date/time
information. As for another example, T" may also specify a user-selected
string W, preferably unique to the transaction and selected at random, and
G(C) may just consist of W (so that the merchant will sign W, or W together
with time information).

— The check-payability condition may be chosen in a rather different way. For
instance, a check C' may be payable if a given property holds between C' and
a quantity dependent on C' that is computable only by the merchant, such
as the property that the last 10 bits of C' (or some specific 10 bits of T')
equal the last 10 bits of SIGy(G(C)).



— To minimize the merchant’s number of signatures, rather than using F'(SIGy (G(C)))
to determine check payability, one may use F(SIG ) (G(V;))), where {V;}is a
sequence of values associated to a sequence of times. For instance, V; is a daily
value and specifies the day in question (e.g., V; = 02.01.01, V;;; = 02.02.01,
etc.) and a check C relative to a transaction T on day i may be payable if
F(SIGM(V;)) < s (or if some other property holds between C' and a quan-
tity computable from V; only by M, such as whether the last 10 bits of C'
—or some specific 10 bits in 7— equal the last 10 bits of SIG p(V;)).

Note that the merchant may evaluate F(SIGp(G(V;))) at the beginning
of day/time interval i, so that, upon receiving a check C' on that day/time
interval, M may immediately discard C' if it is not payable, and set C' aside
for proper credit otherwise.

Note too that it is better in this variant for the merchant to hide all infor-
mation about which checks he has discarded and which checks he has set
aside for credit during a given day/time interval. Else malicious users may
predict or infer somewhat F(SIGy(G(V;))), and give M checks that are
not payable or have less probability of being payable. For this reason, if the
merchant uses a V;-approach, we recommend that he stores all his payable
checks of a given day/time interval, and then send all of them to the bank
at the end the day/time interval. This way even a malicious bank cannot
collude with a user so as to enable him to defraud the merchant.

— A special way to implement the above approach consists of utilizing a hash /one-
way function chain. That is, the merchant computes a sequence of values

.’I}O,.’IZl,J]Q,...,mn

where
Z; :H(ZEH_l) fori:O,l,...,n—l,

where H is a one-way function/hash, and puts z, in his public file, or other-
wise publicizes o (e.g., by steps that include digitally signing it). Then one
can use z;, rather than F(SIGy(G(V;))) on day/time interval i.

— It is easy to extend the basic MR1 scheme to handle checks of different
values; everything is simply scaled appropriately for each check.

3 The MR2 Scheme

Recall that Rivest’s lottery scheme suffered from two problems: (1) interaction
in the payment process, and (2) the possibility of user’s excessive payments.
The MR1 scheme solved the first problem, but did not address the second one.
Of the two problems, we regard the first one to be a real one, and the second
to be mostly a “psychological” one. Indeed, the possibility that the user may
be debited substantially more than the micropayments he makes is very small,
and will decrease with the number of micropayments made. Nonetheless, user
acceptance is key to making micropayments widely used.

Accordingly, in this section we present a selective-deposit micropayment
scheme that solves both problems. In particular, it guarantees that a honest



user is never charged more than he actually spends. The small risk of excessive
payment is shifted from the user to the bank. Note that this is much preferable
for two reasons. First, as we said, excessive payment occurred only rarely (i.e.,
for few users) and in moderate amounts. Now if this may have bothered users,
it will not bother banks who are actually accustomed to managing substantial
risks, never mind the rare risk of a small excessive payment! Second, the relative
risk becomes less and less probable in the long run, and thus is less probable for
the bank, given that it will experience much higher volumes than a single user.

Another main attraction of the scheme is its extreme simplicity. Accordingly,
rather than trying hard to prevent cheating, it simply punishes cheating parties,
or purges them from the system before they can create any substantial damage.

PRELIMINARIES. We adopt the same simplifying assumptions and notations
(about transactions, fixed monetary value, fixed selection rate, and digital sig-
natures, etc.) as in the MR1 scheme.

THE BASIC SCHEME

Set up: Each user and each merchant establishes his own public key (with the
corresponding secret key) for a secure digital signature scheme; the mer-
chant’s signature scheme must be deterministic.

Payment: A user U pays a merchant M for a transaction T' (with selection rate
s) by sending M the check C = SIGy(T). The user includes the time and
a serial number SN in every check/transaction. (The serial numbers should
start at 1 and be assigned sequentially.)

Check C is actually payable if F(SIGy(C)) < s. If C is payable, then M
sends bank B both C' and SIG/(C) for deposit.

Selective Deposit: Let maxSNy denote the maximum serial number of a

payable check of U processed by B so far (initially mazSNy = 0). As-
sume that C' is a new, payable check, and that U’s and M’s signatures are
correct. Then the bank B credits M’s account with 1/s cents. Furthermore,
if the serial number SN of the check is greater than max SNy, the bank B
debits U’s account by SN —maxSN cents, and sets MaxSNy < SN —and
may justify its action by providing U with SIGp(C).
(An exception to the above rules is made if the bank notices that the new
check has the same serial number as a previously processed check, or if the
new check’s serial number and time are “out of order” somehow with respect
to previously processed checks, or if the amount of the check is excessive, or
if other bank-defined conditions occur. In such exceptional cases the bank
may fine the user and/or take other actions as it deems appropriate.)

Selective Discharge: The bank may keep statistics and throw out of the sys-
tem (e.g., by revoking their certificates) users whose payable checks cause ex-
ceptions (as noted above) because they are inconsistently numbered and/or
dated, or whose checks are “more frequently payable than expected.” It may
similarly throw out merchants with whom such problematic or “more fre-
quently payable” checks are spent.



BASIC PROPERTIES. As for the MR1 scheme, the set-up phase is simple and
general, the payment phase is non-interactive, and the selection rate is s.

Let us now argue that the scheme is fair for the honest user. At any time
t, an honest user U has been charged mazSN cents if maxzSN is the highest
serial number of U’s successfully deposited checks. Assume now that, by time ¢,
U has made n transactions. Then, because an honest user numbers his checks
sequentially starting with 1, n will also be the highest serial number of any check
that U has written, and thus mazSN < n. That is, U will have been charged at
most (rather than exactly) 1 cent per transaction.

Out of courtesy, M may inform U when a check was payable, but in this
scheme it is preferable that M does not so inform the user, and certainly un-
necessary for him to do so. It is better to keep the user ignorant of which serial
numbers have turned out not to be payable. Note that the user’s cumulative
charges do not depend much on which checks turned out to be payable, but only
on the number of checks he has written.

To incur lesser charges, a malicious user U’ may try to lower artificially
mazSN by using twice at least one serial number SN. Thus U’ can be caught
by B in at least two ways: (1) two checks of U’ are deposited whose serial
numbers and times are inconsistent, or (2) two checks of U’ with the same serial
number are deposited.® Thus, if a suitably high fine or punishment is imposed
on users caught cheating (something that is preferably agreed-upon beforehand),
then cheating would be counterproductive.

A malicious user U’, however, may collude with a malicious merchant M’,
so as to ensure that a check of U’ spent with M' is always payable. Indeed, for
each potential check C', M’ can tell U’ the value of SIG y(C), so it is no longer
unpredictable to U’ whether the check would be payable. With a little trial and
error, U’ only writes payable checks. This way, U’ will always pay just 1 cent
to B, while B will always pay 1/s cents (i.e., $10 if s = 1/1000) to M'. U’ and
M' may then share their illegal proceeds: indeed, U’ may coincide with M" if he
sets himself up as a merchant! Nonetheless, U’ and M’ may only make a modest
illegal gain: if they try to boost it by repeating it several times, they are likely to
be thrown out of the system. (This is a high price to pay, particularly if M’ also
has legitimate gains in the system.) If it is not easy for thrown-out users and
merchants to come back in the system (e.g., under a new identity), or if the price
to get into the system (e.g., that of getting an initial certificate) is sufficiently
high, this illegal game pays little or even has negative returns to the user, and
its cost may be easily absorbed by the bank.

A small probability exist that a honest user may look malicious because he
makes n checks and significantly more than n/s of them become payable. In this
case, he may be thrown out. With appropriate parameter settings, there will be
very few such users. In addition, they can be convinced that they unintentionally

6 Note that way 1 can occur even if honest merchants check for the time accuracy
of the checks they receive: there cannot be perfect accuracy. Note that way 2 may
occur because U’ does not control which of his checks spent with honest merchants
become payable.



caused losses to the bank (e.g., because the bank presents them with the relevant
SIG p(U) values for their checks). Therefore, they may accept being kept on the
system under different conditions—for instance, as users of an MR1 system; that
is, they may agree to be debited 1000 cents, from then on, for each payable check.
(Such a transition to an MR1 system might even be an automatic feature of the
original agreement between the user and the bank.)

VARIANTS. In general, variants of the MR1 scheme apply here too.

We note that to handle checks of different values needs a bit of care. In
general, a check worth v cents should be treated as a bundle of v one-cent checks
(with consecutive serial numbers). A bit more efficiently, the user may write a
single check that, rather than having a traditional serial number has a serial-
number interval, [SN, SN + v]. We leave as an exercise how to modify the MR2
scheme (and its ”penalty system”) so t handle properly such checks.

4 The MR3 Scheme

This scheme differs from both MR1 and MR2 in that the bank determines,
probabilistically and fairly, which checks are payable. Again, the small risk of
excessive payment is shifted from the user to the bank, which is accustomed to
risk management. And again simplicity is a main attraction: rather than trying
hard to prevent cheating, the bank simply punishes/eliminates cheating parties
before they can create any substantial damage.

THE BASIC SCHEME

Set up: Each user and each merchant establishes his own public key for a secure
digital signature scheme.

Payment: A user U pays a merchant M for a transaction T by sending M
the check C' = SIGy(T). The user includes in every check/transaction a
progressive serial number SN.

Selective Deposit: Let ¢’ and ¢ denote, respectively, the time of M’s last and
current deposit. M groups all checks dated between ¢' and t into n lists,
Ly,...,L,. Denote by V; the total value of the checks in L;, and by V the sum
of the V;’s. M computes a commitment C; to list L;, preferably together
with V; (e.g., practically speaking by one-way hashing them so that C; =
H(L;,V;)), and then sends C1, . .., C), to B, preferably signed and with an in-
dication of deposit time. For instance, M sends SIGy(¢t,n,V, H(L1,V1),..., H(Ly,, V,))
to B.

B verifies M’s latest deposit time, and selects k indices, i1,12,...,i%, and
sends them to the merchant.

M responds by de-committing Cj,,...,C;, .

B credits M’s account with V' cents, and debits the users whose checks
belong to L;,, ..., L;, according to the serial numbers used —e.g., as in the
MR2 scheme.



(An exception to the above rules is made if the bank notices that something
is wrong. For instance, if the sum of the checks in L;; is not V;,, if one check
in L;; has the wrong time, if a newly processed check has the same serial
number as a previously processed check, or if the new check’s serial number
and time are “out of order” somehow with respect to previously processed
checks, or if the amount of the check is excessive, or if other bank-defined
conditions occur. In such exceptional cases the bank may fine and/or throw
out of the system the merchant and/or the user, or take other actions as it
deems appropriate.)

Selective Discharge: B may keep statistics and throw out of the system (e.g.,
by revoking their certificates) users or merchants who misbehave, those users
U whose checks cause B to pay merchants more than it is entitled to receive
from U, and the merchants with whom those users spend their checks.

Basic PROPERTIES. As for the MR1 and MR2 schemes, the set-up phase
is simple and general and the payment phase is non-interactive. Moreover, the
present scheme is very understandable and looks very fair to the merchants.

Notice that the value of k is arbitrary and up to the bank. When there is
more attempted fraud, or there is suspicion of a particular merchant, a larger
value of k may be used. Indeed, B may ask the merchant to de-commit all of
his commitments. (Failure to de-commit, in particular, may trigger a fine or a
discharge of the merchant.) Choosing k > 1 is recommendable in order to having
a chance to catch two checks from the same user with the same serial number
(rather than throwing out such a user later on “statistical evidence”).

Notice that the merchant may deposit at prescribed times, ti,ts,..., or at
times of his choice. For instance, at a time ¢ in which he has new checks totaling
a given value (so that he does not want to delay payment any further), or when
he has sufficiently many new checks (and does not want to store them any more).

As in MR1 and MR2, users and merchant may collude, but again with little
or no benefit, since the bank may adopt the same defense mechanisms. Honest
users who look suspicious may be treated similarly too.

VARIANTS. Variants of the MR1/MR2 schemes may also be applied here. In
addition, the merchant may make use of Merkle trees to commit to Ly, ..., L,.
Check value information may be authenticated within the tree or alongside with
it. In particular, the Merkle tree may authenticate at each node the total value
of the checks “stored below it,” as well as the total value of the check stored
below each child. The same holds for check time information. The root of the
Merkle tree may be digitally signed by the merchant—possibly together with
other data, such as (partial or total) check value and time information.

The value of n may be variable or fixed. The bank may choose k£ out the
n lists to have the merchant decommit, and pay the merchant an amount that
depends on k, n and the value in the checks contained in the k& de-committed
lists. For instance, if the total value of these checks is TV, the bank may pay
nTV/k.



Banks and merchant may agree not to process deposits whose checks total
more than a given value, or deposits containing a list totaling more than a given
value. (This discourages a single cheating attempt with the goal of getting either
a high payoff or going bust.)

5 Conclusions

We believe that the schemes presented here provide effective solutions to the
micropayments problem. Malicious behavior of a single player is generally pre-
vented by design, while malicious behavior of a coalition of players is dealt with
by a penalty system backed up by hard evidence. From a user’s point of view,
the interface is beautifully simple: it is just like writing (small) checks. From the
bank’s point of view, it is just like processing (large) checks. And the merchant
is happy, because he can efficiently aggregate small payments from many users.
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