Table of Contents – 5) Digital Payment Systems

5.1) Introduction
- Motivation (Examples, Demo)
- Taxonomy (Payment Models, Validation, Payment Size, Status, Security, Concept)
- Market View (Technological & Economical Clustering, Conceptual Clustering)

5.2) Secure Electronic Transactions (SET)
- Introduction (Shopping Demo, Motivation, Background, Scenario, Scope)
- Security (Requirements, Dual Signature, Mechanisms)
- Participation (Prerequisites, Certification Hierarchy, Registration)
- Payment (Payment Demo, Payment Workflow, Invoice Example, Further Messages)
- Summary (Status, Discussion, Outlook, 3D-SET)

5.3) Internet Payment Systems
- Small Payment Systems (CyberCoin, Ecash, Geldkarte)
- Micropayment Systems (MilliCent, IBM-MP)
- Further Digital Payment Systems (Phone Ticks, Brokat Twister X.Pay)
- Summary and Conclusions

5.4) Mobile Payment Systems
- Introduction (Scenario, Internet & Mobile Security, Classification, Market View)
- Selected Systems (Pay@Once, SET, mAccess, X.Pay, PayBox, PayPal)
- Summary and Open Issues

Mobile Digital Payment Scenario

- Payment: Transfer of monetary value from payer to payee
- Mobile Payment: via mobile networks

Banks / Credit Card Companies / Dedicated Payment Processors
Network Operators
- Identified Customers
- Prepaid Customers
Internet Payment Security Technologies

- Plain Security
 - Login & Password, TANs (Transaction Numbers)

- Outband Security
 - Email, mobile phones, premium phone numbers,

- Secure Communication Channel (SSL, TLS)
 - Encrypted channel between customer browser & merchant Web server
 - Server authentication, optional browser authentication
 - Supported by the main browsers

- Application Security
 - Digital Signatures
 - Non-repudiation of digital actions
 - Normally wallet support (plug-ins, helper applications, ...) required
 - PKI – Public Key Infrastructure
 - Smart cards for storing the private key
 - Digital Envelopes
 - Encrypting (parts of) messages on application level

Mobile Payment Security Technologies

- PIN-based Security
 - Authentication and authorization via Login / PIN or Password / TAN
 - Standard security arrangement defaulting PKI based mechanisms

- Mobile Operator Driven Security
 - Channel Encryption between End-User Device and WAP gateway
 - Wireless Transport Layer Security (WTLS)
 - No End-To-End-Security between Customer and Merchant
 - Unless the Merchant operates the WTLS-Gateway
 - User Identity Module (UIM): (U)SIM/WIM

- Financial Institute Driven Security
 - Dual slot mobile phone – second smart card
 - Multi-application SIM card
Classification of Mobile Payment Solutions

- Banks / Credit Card Companies / Dedicated Payment Processors
 - Mobile Credit Card Payments
 - Migrating Internet Payment Systems

- Mobile Network Operators
 - Utilization of existing Billing Mechanisms (Prepaid and contract based)

- Multi-Payment Method Frameworks
 - Mobile Network Operators
 - Dedicated Payment Processors
 - Shopping Malls, Large Shops

- Other Mobile Payment Systems
 - Mobile Home Banking, Internet Payments, Mobile Retailer Support

m-Payment: Market View

Migrating Internet Payment Systems
- CyberCash
- Geldkarte
- M-Achat
- SET

Mobile Credit Card Payments
- Chargit WAP
- GMCIG
- Netlife
- Sagem
- Viate

Multiple Payment Method Platforms
- Atos Poseidon
- Ericsson Jaida
- MoreMagic MBroker
- SonaMobile Pay

Prepaid Accounts
- LHS Prepaid
- Siemens Pay@Once Prepaid

Internet Payments With Mobile Phones
- GiSmO
- Paybox
- WebTrade.Net

- Ecash
- IBM-MP
- MilliCent

Mobile Home Banking
- 724 Solutions
- EarthPort
- PostGirot Mob.Smart
- Solo e-Payment

- BizPay
- PayPal
- S1
- W-Trade

Mobile Retailer Support
- 13Paid
- eXcape

Other Mobile Payment Systems
- Aether
- Motorola m-Wallet
- Telecom Italia Easybuy

- Mosaic Postillion
- MovilPago

* Details in this Lecture * Siemens Involvement
5.1) Introduction
- Motivation (Examples, Demo)
- Taxonomy (Payment Models, Validation, Payment Size, Status, Security, Concept)
- Market View (Technological & Economical Clustering, Conceptual Clustering)

5.2) Secure Electronic Transactions (SET)
- Introduction (Shopping Demo, Motivation, Background, Scenario, Scope)
- Security (Requirements, Dual Signature, Mechanisms)
- Participation (Prerequisites, Certification Hierarchy, Registration)
- Payment (Payment Demo, Payment Workflow, Invoice Example, Further Messages)
- Summary (Status, Discussion, Outlook, 3D-SET)

5.3) Internet Payment Systems
- Small Payment Systems (CyberCoin, Ecash, Geldkarte)
- Micropayment Systems (MilliCent, IBM-MP)
- Further Digital Payment Systems (Phone Ticks, Brokat Twister X.Pay)
- Summary and Conclusions

5.4) Mobile Payment Systems
- Introduction (Scenario, Internet & Mobile Security, Classification, Market View)
- Selected Systems (Pay@Once, SET, mAccess, X.Pay, PayBox, PayPal)
- Summary and Open Issues

NetCom Trial – Siemens Pay@Once

- Customer connects to payment center by dialing number displayed on vending machine
- Payment system calls vending machine and informs it that customer can purchase a drink
- When drink is selected, a response is sent to payment center
- Customer’s phone bill charged (fixed rate call = cost of refreshment)
Mobile SET – Secure Electronic Transactions

- Standard by Visa & MasterCard
 - for secure usage of credit cards on the Internet
- Protocols between Customer, Merchant and Payment Gateway
 - Cardholder registration, merchant registration
 - Purchase Request, Payment Authorization
 - Payment Capture
- Uses public-key cryptography
- Credit card companies interested in support of SET by mobile devices
- Today’s alternatives to smart cards & advanced security support
 - Server Wallets with Customer Id and PIN authorization
 - Merchant initiated SET in the background, proprietary forms in the front-end
 - Both void the main security feature of SET, i.e. customer non-repudiation

http://www.setco.org
http://www.gmcig.org

Trintech PayWare mAccess – Form Filling

- PayWare mAccess provides mobile shopping support
 - Pre-records customer credit card and shipment address details
 - auto-fills order form using ECML (http://www.ecml.org)
 - transfers payment and shipping details to merchant
- PayWare mAccess operates as protocol monitor
 - kind of WAP gateway / access control proxy
 - monitors communication between customer and merchant
 - authenticates the customer via login and PIN
 - forwards the auto-filled order form to the merchant
- Security
 - WTLS between wireless device and mAccess
 - SSL between mAccess and merchant
Trintech PayWare mAccess - Workflow

1. **Customer requests order form**
 - mAccess intercepts order form
 - mAccess auto-fills order form from pre-recorded customer details using ECML
 - mAccess presents auto-filled order form for customer approval

2. **Customer logs on to mAccess**
3. **Customer selects details**
4. **mAccess forwards customer credit card and shipping details to merchant**
5. **Customer gets receipt from merchant**

Broker Twister X.Pay

- The Internet version of Twister X-Pay
 - operationally deployed in many Internet shops and shopping malls
 - small and macropayments
 - credit card payments, account-based aggregation, loyalty points
 - Thin Java Wallet is SET-certified
 - Multi-Payment-Method Broker Framework

http://www.brokat.de
Brokat Twister X.Pay - Mobile Payment Workflow

1. Service Request
2. Payment Request
3. Payment request
5. PM Select. & Auth. Req.
6. Aut.
7. Reassurance
8. Payment Method Specific Messages
9. Inter-Account Transfer
10. Confirmation
11. (SMS) Receipt
12. Service Delivery

- Monthly Bill
- PrePaid Account
- Pin
- Bank Account
- Credit Card

- Customer
- Merchant
- Banks, etc.

- Internet
- Intranet

Payment workflows equivalent
- for the Internet scenario and the mobile scenario
- allowing for a close integration and an identical merchant payment interface

Technique of mutual redirections between merchant and broker
- minimal demands on the customer's end-user device
- can be handled equally well in WAP and Internet scenarios
PayBox – Authorization via Cell Phone

- Customers register with Paybox (mobile phone id and account details)
- Customer renders mobile phone id (1) to merchant, who contacts (2) Paybox
- Paybox calls (3) mobile phone with voice & DTMF based authorization dialog
- Paybox places (4) a direct debit to the customer’s account
- Paybox credits (5) and notifies (6) merchant

PayBox - Further Details

- Peer to Peer / Physical Situation (e.g. Taxi) Mobile Payments
 - TA fee from 25 Cent up to 2 Euro, payment limit 200 Euro
 - Payer renders mobile phone id to payee
 - Payee invoices payer by calling a special Paybox phone number
 - Transaction proceeds as described before

- Security Concerns
 - Payer must render to payee mobile phone Id or Paybox pseudonym
 - These data are sufficient to terrorize the payer with fake invoices
 - Payer uses PIN authentication and authorization
 - Payments neither non-repudiable nor durable
 - Risk for merchant and Paybox operator

- Deutsche Bank involved
- Similar Systems: GiSMo, Seasoning, ...
PayPal – Mobile Home Banking

- By Confinity Inc. with support from Nokia and Deutsche Bank
- Peer-to-peer payments via wireless PDAs or Web phones
- From a credit card account to the recipient's PayPal account
- PayPal gains float, customers avoid mailing paper checks
- Access to the user’s PayPal account is passphrase / PIN protected

PayPal – Further Details

- Transaction Workflow
 - (1) The payee places a remittance with PayPal
 - (2) The payment is deducted from the payer’s credit card / PayPal account
 - (3) The payment is credited to the payee’s PayPal account
 - (4) The payee and (5) payer each receive an email notification
 - The payer must register with PayPal
 - New payers must specify their credit card details
 - Money can be sent to both PayPal and not yet PayPal users
 - The payer may use a Web-enabled phone or a wireless PDA
 - The payee's email address must be specified
 - The payee must sign up or log in to PayPal
 - The payment appears in the payee’s PayPal account balance.
 - The payee can transfer the funds to a bank account, request a check, or pay the funds to someone else.
 - Similar Systems: EarthPoint, BizPay, ...
 - Use of the mobile phone id instead of email address
Table of Contents – 5) Digital Payment Systems

5.1) Introduction
- Motivation (Examples, Demo)
- Taxonomy (Payment Models, Validation, Payment Size, Status, Security, Concept)
- Market View (Technological & Economical Clustering, Conceptual Clustering)

5.2) Secure Electronic Transactions (SET)
- Introduction (Shopping Demo, Motivation, Background, Scenario, Scope)
- Security (Requirements, Dual Signature, Mechanisms)
- Participation (Prerequisites, Certification Hierarchy, Registration)
- Payment (Payment Demo, Payment Workflow, Invoice Example, Further Messages)
- Summary (Status, Discussion, Outlook, 3D-SET)

5.3) Internet Payment Systems
- Small Payment Systems (CyberCoin, Ecash, Geldkarte)
- Micropayment Systems (MilliCent, IBM-MP)
- Further Digital Payment Systems (Phone Ticks, Brokat Twister X.Pay)
- Summary and Conclusions

5.4) Mobile Payment Systems
- Introduction (Scenario, Internet&Mobile Security, Classification, Market View)
- Selected Systems (Pay@Once, SET, mAccess, X.Pay, PayBox, PayPal)
- Summary and Open Issues

Mobile Payment Systems Summary

- Current Status
 - All systems in very early stages of planning or piloting
 - Usually very little information and technical details disclosed
 - Often little more than declarations of intent
 - Lack of appropriate security mechanisms in the mobile environment

- Indirect payment model dominates
 - Userid / PIN / TAN authentication and authorization widely used
 - Only a few direct payments (e.g. Iti Achat, Geldkarte, ...)
 - Special security support in the mobile end-user device
 - Rarely use of advanced security technologies (e.g. MobilSmart)
 - SIM card application signs SMS remittance authorization
Mobile Payment Systems Open Issues

- Suitable Security Support in the Mobile Environment
 - Not just UserId / PIN / TAN
 - Strong Public Key Cryptography Based Security Mechanisms
 - Smart Card Support

- Mechanisms Required
 - Ensure: Confidentiality, Integrity, Authentication, Non-Repudiation, ...
 - End-2-End security between customer and merchant
 - Equivalent to SSL, WTLS mostly isn’t good enough
 - Mobile Digital Envelopes & Signatures
 - Authentication and WPKI-Support

- Mobile Security and Payment Standardization Bodies (examples)
 - WAP forum: WTLS, E2E-Security, WML Script SignText, ...
 - 3GPP SIM Toolkit standardization
 - GMCIF - MasterCard Global Mobile Commerce Interoperability Forum
 - MSign - Brokat Mobile Digital Signature Merchant API

Questions and Comments?

Thanks for your Attention.