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ABSTRACT 
Banking and financial industries are facing severe challenges 
in the form of fraudulent transactions. Credit card fraud is one 
example of them. In order to detect credit card fraud, we 
employed one-class classification approach in big data 
paradigm. We implemented a hybrid architecture of Particle 
Swarm Optimization and Auto-Associative Neural Network 
for one-class classification in Spark computational framework. 
In this paper, we implemented parallelization of the auto-
associative neural network in the hybrid architecture. 

CCS Concepts 
• Computing methodologies→Semi-supervised learning 
settings   • Mathematics of computing→Bio-inspired 
optimization   • Information systems→Clustering and 
classification.  

Keywords 
Auto-associative neural network; Auto-encoder; One-
class classification; Particle swarm optimization; Single 
class classification. 

1. INTRODUCTION 
A credit card is a payment card provided by every bank to 
eligible customers (cardholders) to make day-to-day 
transactions. Using the card, a cardholder can pay for goods 
and services without having money in their account at the 
particular moment and can be paid back to banks later point in 
time. The legitimate transactions made by the cardholder 
provide a pattern of his/her expenditures. If a card is stolen or 
accessed by some fraudsters, the transactions show an 
abnormal expenditure pattern and such transaction is called a 
fraudulent transaction. But, compared to large voluminous 
legitimate transactions, these types of transactions are 
relatively rare. Therefore, identification of such fraudulent 
transactions is a quite complex task, and it is a part of fraud 
analytics. Due to the complexity involved in fraud analytics, 
identification of fraudulent transactions always has been an 

interesting research problem for banking and financial 
industries, research communities and academia. The fraud 
analytics can be achieved using different data mining tasks like 
classification, outlier detection, etc. 

Classification can be performed in various ways viz. binary, 
multi-, and One-Class Classification (OCC). Binary 
classification is the process to classify a set of samples into 
two classes. Similarly, the multi-class classification is used to 
classify a sample into three or more classes. In the case of 
OCC, we have sufficient amount of samples available for one 
class, whereas samples for other classes will be rare. In this 
case, some rare samples do not belong to any of the known 
classes. Some examples of rare events area failure of a nuclear 
plant, credit card fraud, network intrusion, etc. Hence, 
whenever we came across the normal /regular samples in 
abundance and the targeted event in scarce, we can employ 
one-class classification approach to detect the rare event.  

In this study, we employed OCC for credit card fraud detection 
in Big Data framework. Big Data can be attributed using 4 V’s 
viz. Volume, Velocity, Variety, and Veracity [20]. Volume 
refers to a huge amount of data. Velocity implies how fast data 
are generated. Variety attributed to various formats of data. 
Finally, veracity represents the accuracy of data. In the case of 
credit card transactions, every bank deals with huge amount of 
credit card transactions every hour. Here, huge amount refers 
to volume and number of transactions per hour implies to 
velocity. So, credit card transactions can be attributed to two 
V’s of Big Data i.e. volume and velocity. For our study, we 
relied upon one-class classification. Since there is a scarcity of 
fraudulent credit card transactions and a binary classification 
approach needs sufficient amount of historical data for both 
classes like legitimate and fraudulent,  we extended one-class 
classification model proposed by Paramjeet et al. [16] in big 
data environment using Apache Spark framework for credit 
card fraud detection. Henceforth, we referred “Apache Spark” 
with Spark only. 

In this paper, we developed parallelization of a hybrid 
architecture involving Particle Swarm Optimization (PSO) and 
Auto-Associative Neural Network (AANN) which is referred 
to as PSOAANN architecture. The PSOAANN architecture 
was proposed by Paramjeet et al. [16]. We implemented the 
AANN in a parallel manner over a Spark standalone cluster for 
one-class classification. The weight updation steps using PSO 
is implemented in a serial manner. 
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The remaining part of the paper is organized as follows: 
Literature review is presented in Section 2. Section 3 
elaborates the proposed methodology. The dataset details are 
given in section 4. The results and discussion are presented in 
Section 5. In Section 6, the study is concluded with some 
future directions of the work. 

2. LITERATURE REVIEW 
In this section, we reviewed study related to one-class 
classification, auto-encoders for OCC, and spark for machine 
learning. 

2.1 One-class Classification 
Ravi and Singh [18] performed OCC using Auto-Associative 
Extreme Learning Factory (AAELF). They employed AAELF 
for bankruptcy prediction, credit risk prediction, and phishing 
detection. Tax and Duin [23] proposed Support Vector Data 
Description (SVDD). They separated the target class (negative 
data objects) from the outliers (positive class data object) by 
creating a hypersphere around the target data with a minimal 
volume. Strackeljan et al. [22] demonstrated a fault detection 
system using SVDD and a feature selection method for OCC. 
Another approach used for OCC was One-class Support 
Vector Machine (OC-SVM). Mourão-Miranda et al. [13] used 
OC-SVM for patient classification. 

2.2 Auto-encoders for OCC 
As far as one-class classifier using auto-encoder or auto-
associative neural network is concerned, Pandey and Ravi [14] 
have proposed a model using PSOAANN for phishing 
detection in emails. Ravi et al. [17] presented classifying 
capability of PSOAANN in bankruptcy prediction using 
different bank datasets. 

2.3 Spark for Machine Learning 
Spark is a computational framework which provides iterative 
and interactive computation in a clustered environment using 
grand scale distributed setting. The native language for Spark 
is Scala [19], a high-level language for the JVM, and provides 
a functional programming interface. Spark is very efficient for 
machine learning. There are different APIs in Spark for 
machine learning. Meng et al. [12] have presented an open-
source distributed machine learning library, MLLib. MLLib 
offers a high-level API that takes advantage of Spark’s 
powerful environment. Sparks et al. [21] proposed MLI, an 
API for distributed machine learning.Kraska et al. [9] 
developed MLbase, a distributed machine learning system. 
MLbase provides a simple way to specify ML tasks. It 
dynamically selects a learning algorithm, which helps an ML 
researcher to work with ease. MLbase is quite optimized for 
data access.  

Spark has been successfully used in a variety of applications of 
ML. Bharill et al. [3] proposed a clustering algorithm called 
Scalable Random Sampling with Iterative Optimization Fuzzy 
c-Means algorithm(SRSIO-FCM) with Spark to handle the 
challenges associated with big data clustering. Panigrahi et al. 
[15] have proposed a Hybrid Distributed Collaborative 
Filtering Recommender Engine (HDCFRE) using Spark. They 
experimented with MovieLens dataset. The parallel 
implementation of HDCFRE using Spark outperformed other 
traditional collaborative filtering algorithms. McNeil et al. [11] 
implemented Scalable Real-time Anomalies Detection and 
Notification of Targeted Malware in Mobile Devices 
(SCREDENT) using Spark. The authors developed a system to 

detect the mobile malwares in real-time. Bello-Orgaz et al. [2] 
surveyed the different tools for machine learning for social 
media data on a big data paradigm. They used Spark for 
massive data processing for the efficient utilization of ML 
algorithms in different domains. 

3. PROPOSED METHODOLOGY 

3.1 Particle Swarm Optimization 
(PSO) 
PSO, developed by Eberhartand Kennedy [7] is a population-
based optimization algorithm. It is a bio-inspired algorithm 
which mimics the behavior of a flock of birds or a school of 
fish in the search of food. PSO implementation is easy due to 
the tweaking of a few parameters. PSO generates solution by 
sharing knowledge mutually among all the particles present in 
the population to achieve the goal. 

The process of PSO involves two basic steps. First, an update 
of the velocity of a particle. Second, the update of the position 
with the help of updated velocity of the particle. The two 
equations are given below: 

𝑉𝑑
𝑖+1 = 𝑤 ∗ 𝑉𝑑

𝑖 + 𝑐1 ∗ 𝑟1
𝑖 ∗ (𝑃𝑑

𝑖 − 𝑥𝑑
𝑖 ) + 𝑐2 ∗ 𝑟2

𝑖 ∗ (𝑃𝑑
𝑔

− 𝑥𝑑
𝑖 )

      (1) 

𝑥𝑑
𝑖+1 = 𝑥𝑑

𝑖 + 𝑉𝑑
𝑖+1    (2) 

where 𝑉𝑑 
𝑖 is the velocity of the particle at the instant of ith 

iteration i.e. old velocity, 𝑉𝑑
𝑖+1 is the velocity of the particle at 

the instant of (i+1)th iteration i.e. new velocity, 𝑃𝑑
𝑖 is the best 

position travelled through a particle,𝑃𝑑
𝑔 is the best position 

travelled through all the particles, 𝑥𝑑
𝑖  and 𝑥𝑑

𝑖+1are the positions 
of a particle at the instant of ith iteration and (i+1)th iteration 
respectively. The subscript𝑑is the dth dimension of the data 
object. The variable 𝑤 is the inertia weight value, 𝑐1 and 𝑐2are 
two predefined positive constants, 𝑟1 and 𝑟2 are random 
numbers generated through uniform distribution U(0, 1). 

3.2 Auto-Associative Neural Network 
(AANN) 
AANN, developed by Kramer [8], is a variant of neural 
network where the number of nodes in the input layer is same 
as the output layer. Thus, it is named as auto-associative. The 
proposed model of Kramer contains three hidden layers viz. 
mapping layer, bottle-neck layer, and de-mapping layer. The 
AANN is a supervised model where the inputs are compared 
against the outputs of the model.  Thereupon the error between 
inputs and outputs were optimized. 

3.3 Architecture of PSOAANN 
Paramjeet et al. [16] proposed PSOAANN, which comprises 
three layers, i.e. input, hidden, and an output layer. The input 
and output layers contain an equal number of nodes that is to 
represent the same variables in the input as well as the output 
layer. The number of hidden nodes is specified by the user. 
Each input node of the input layer is connected to all the nodes 
of the hidden layer. Similarly, each hidden node, in turn, is 
connected to all nodes of the output layer. The Sigmoid 
activation function is used in the hidden and output layers [16]. 

At the end of the training phase, the nodes in the output layer 
contain the perturbed values of the original input variables. In 
other words, the PSOAANN is non-linearly transforming the 



original set of input variables into a set of perturbed values. 
There are well-known drawbacks in back propagation 
algorithm such as slow convergence and entrapment in local 
minima. To overcome these drawbacks, we have used a swarm 
intelligence technique, PSO which is an evolutionary approach 
for weight update, instead of the back-propagation. 

We presented the architecture of PSOAANN in Figure 1. 
Figure 1 depicts the training and testing modules of 
PSOAANN. We considered mean squared error (MSE) as the 
error function. The advantages of using a three layered AANN 
for one-class classification over the five layered architecture of 
AANN [8] are decreasing computation time and the associated 
complexity.  

The algorithm for PSOAANN is presented below.  

1. Training phase of PSOAANN algorithm: Specify the 
required number of hidden nodes. Initialize randomly the 
weight values between the input and the hidden layers (W) and 
also between the hidden and the output layers (W') using 
uniform distribution in the range (–5, 5). The PSOAANN 
model is trained with negative class samples (i.e. legitimate 
credit card transactions) only. The input nodes take the 
normalized input which is calculated as below. The output 
nodes contain the input variables as the target variables thereby 
bringing in the auto association concept. 

 𝑥𝑑𝑘
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =

𝑥𝑑𝑚𝑎𝑥−𝑥𝑑𝑘

𝑥𝑑𝑚𝑎𝑥−𝑥𝑑𝑚𝑖𝑛
   (3) 

where 𝑥𝑑𝑚𝑎𝑥, 𝑥𝑑𝑚𝑖𝑛are the maximum and minimum value of 
the dimension ‘d’ in the input data object and𝑥𝑑𝑘is the input 
value of dimension ‘d’ of kth input object. 

2. Compute 𝑥𝑑𝑘^ as follows: 𝑥𝑑𝑘is the actual input and 𝑥𝑑𝑘^ is the 
predicted input. Let m be the number of nodes in the both input 
and output layer; n be the number of nodes in the hidden layer. 
The predicted output is calculated as follows: 

Computation at Hidden layer for each hidden node: 

The input value is multiplied by the randomly initialized 
weight values W is given by (Hj): 

 𝐻𝑗 = ∑ 𝑥𝑑𝑘
𝑚
𝑘=1 ∗ 𝑤𝑘𝑗   (4) 

where j = 1 to n, for n hidden nodes;𝑥𝑑𝑘is the input value of 
dimension ‘d’ of kth input object and𝑤𝑘𝑗is the weight from kth 
input node to jth hidden node. 

Then sigmoid function is applied to Hj, given as below. 

 𝑆(𝐻𝑗) =
1

1+𝑒
−𝐻𝑗

    (5) 

where Hj is given by (4).  

Computation at Output layer for each output node: 

The output of sigmoid function at hidden layer (S(Hj)) is 
multiplied by the randomly initialized weight values W' is 
given by (Oi): 

 𝑂𝑖 = ∑ 𝑆𝑛
𝑗=1 (𝐻𝑗) ∗ 𝑤𝑗𝑖    (6) 

where i = 1 to m, for, m output (= input) nodes, S(Hj) is given 
by (5) and𝑤𝑗𝑖is the weight from jth hidden node to ith output 
node. 

Then sigmoid function is applied to Oi, given as below: 

 𝑆(𝑂𝑖) =
1

1+𝑒−𝑂𝑖
    (7) 

where Oi is given by (6). 

As the sigmoid function results in a predictive value,𝑥𝑑𝑘^ in [0, 
1] which is compared with the normalised input,𝑥𝑑𝑘that results 
into the Mean Square Error (MSE). 

3. Compute error measure (MSE) E as follows: 

 𝐸 =
1

𝑚𝑛
∑ ∑ (𝑥𝑑𝑘^ − 𝑥𝑑𝑘)2𝑛

𝑑=1
𝑚
𝑘=1   (8) 

4. The MSE is optimized using PSO by updating all weights. 
The user-defined parameters in (1) are taken as, inertia weight 
= 0.9, c1 = c2 = 2. 

5. Repeat Steps 2 to 4 until convergence is achieved or the max 
number of iterations is completed. 

6. The Testing phase of PSOAANN algorithm: The PSOAANN 
model was trained on negative samples. The model learns the 
characteristics of samples belonging to majority class. The 
objective is to minimize the MSE. When the model was 
properly trained, it was tested on positive samples. The model 
will produce larger MSEs at the testing time compared to 
training phase. Pattern classification is achieved at the test 
phase by computation of relative error for each of the features 
present in the input and output data. In this case, the outputs 

Normalized Negative Class Data 

Model Training in a Distributed environment 

Optimization Algorithm (PSO) to optimize 
network parameters 

Model Testing (with positive class data) 

m input units m output units 

n hidden units 

Statistical evaluation of model outputs 

𝑋1 

𝑋2 

𝑋𝑚−1 

𝑋𝑚 

𝑋̂1 

𝑋̂2 

𝑋̂𝑚 

𝑋̂𝑚−1 

Figure 1: Architecture of hybrid model of PSOAANN 



are approximations of inputs. If the relative error is having a 
larger value than a threshold value for all the input features, 
then a sample is considered to belong to the positive class. 
Here, the threshold value is specified by the user, and we have 
taken it as 0.05. Otherwise, the sample is identified to belong 
to the negative class. 

Relative Error =
|𝑥𝑑𝑘^ −𝑥𝑑𝑘|

𝑥𝑑𝑘
   (9) 

The classification rate is computed using equation (10) 

Classification rate = 
No. of transactions classified as Fraud

No. of total transactions in Positive Class
∗ 100

                   (10) 

The training of PSOAANN falls under both unsupervised and 
supervised learning. It is unsupervised because we do not 
provide the class or output variable information to the AANN 
during training. The input variables are mapped onto 
themselves. It is supervised because the weights of AANN are 
updated by PSO where the fitness function of the particles viz., 
MSE is minimized. Therefore, PSO-based training algorithm 
provides supervised learning. 

3.4 Hadoop MapReduce vs. Spark 
Hadoop MapReduce (MR) [6] is difficult to program and 
needs abstraction, whereas Spark is easy to program and does 
not require any abstraction. The Spark has interactive mode 
whereas Hadoop MR does not possess interactive mode except 
Pig and Hive. Hadoop MR processes data in batch mode and 
produces reports for answering the queries on historical data. 
On the other hand, Spark can handle streaming data and allows 
us to modify the data in real time. Hadoop MR has more 
latency as the partial results are stored in the disk. In the case 
of Spark, it uses primary memory for caching partial results 
across the memory of distributed workers, which helps in 
faster execution. Zaharia et al. [26] claimed that Hadoop falls 
behind Spark by a factor of 10 in iterative machine learning 
workloads. A machine learning algorithm involves the iterative 
and interactive mode of execution. In this case, Hadoop falls 
behind in latency of execution time in comparison to Spark. 

3.5 Spark and Data Parallelization 
Spark is a computational framework for cluster computing 
environment involving distributed data processing. A Cluster 
is a group of machines connected to LAN and communicating 
through Secure Shell (SSH).It provides iterative, interactive, 
and scalable data processing. It provides high-level APIs in 
Java, Scala, Python and R and also interactively can be used 
from Scala, Python and R shells. Spark can run on a single 
machine as well as over several machines with existing cluster 
managers. Spark has the following options for deployment: (i) 
Amazon EC2, (ii) Standalone Deploy Mode, (iii) Apache 
Mesos, and (iv) Hadoop YARN. It can access diverse data 
sources including Hadoop Distributed File System (HDFS), 
Cassandra, HBase, and Amazon S3 (Simple Storage 
Service)[5]. 

Spark uses Resilient Distributed Datasets (RDDs), which is a 
distributed memory abstraction. RDDs allow in-memory 
computations on a distributed environment with fault-
tolerance. RDDs present influential role in two types of 
applications viz. iterative algorithms and interactive approach. 
Other computing frameworks like Hadoop MR does not 
provide the same. Each RDD is having five pieces of 
information which can be accessed through a common 

interface. First, a set of partitions, which are atomic pieces of 
the dataset. Second, the preferred location for a partition, 
which is required for faster access due to data locality. Third, a 
set of dependencies on parent RDDs, which is needed for 
computation on RDDs. Fourth, an iterator, which is required 
for computation of elements in the partition with the help of 
iterators of parent RDDs. Finally, the fifth one is metadata 
about partitioning scheme and data placement [25]. The 
concept of RDD provides the parallelization of the algorithm 
through the partitions of data. Apart from providing in-
memory storage, RDDs can also automatically recover from 
failures. Each RDD tracks the graph of transformations that 
was used to build it, called its lineage graph. These lineage 
graphs help in the reconstruction of any lost partitions through 
re-execution of operations on base data [24].  

Spark has an inherent feature of executing iterative programs 
and interactive mode of execution for user-friendly data 
analysis. Figure 2 depicts the components of Spark 
computational environment. The user interacts with the top 
layer through the computing interface. The top layer provides 
usage of different APIs for the Spark application. The Spark 
applications interact with cluster manager for accessing the 
data from the distributed data storage. 

A Spark cluster has two main components: master node and 
worker nodes. Each machine in the cluster is known as a node. 
There is a single master node and more than one worker nodes 
in a cluster. The system which is the master node can also 
serve as a worker node. The master node allocates jobs to the 
worker nodes. A distributed file system e.g. HDFS, a cloud 
storage system e.g. S3 or a local file system is used for data 
storage. Spark can run on a single-node cluster setup having 
both master node and the worker node on the same machine. It 
also runs in a multi-node cluster setup. Spark applications run 
as independent sets of processes on a cluster. The Spark 
applications coordinate among themselves using a 
SparkContext object in the main program, which is also known 
as the driver program. For running spark on a cluster, the 
SparkContext connects to one of cluster managers. A Spark 
cluster can have several types of cluster managers (i.e. either 
Spark’s standalone cluster manager, Mesos or YARN), which 
allocate resources across applications. When the SparkContext 

Computing Interface for Spark 

API (Scala, Python, Java, R) 

Cluster Manager for Distributed Computing 

(Standalone, Yarn or Mesos) 

Distributed Data Storage 

(HDFS, Other formats) 

Figure 2: Components of Spark 
computational environment 



is connected with the cluster manager, Spark acquires 
executors on worker nodes of the cluster. Here, an executor is 
a process that performs computations and storage operations 

for an application. Next, it sends application code to the 
executors. Finally, SparkContext assigns tasks to the executors 
to run [5]. The cluster components are presented in Figure 3. 

A job is a part of the code in the Spark application which takes 
inputs from HDFS/local file system, performs computations on 
them. A job writes outputs to an HDFS/local file system. 
Figure 4 depicts how a job is distributed on a Spark Cluster. A 
driver process runs on the master node and executes a job over 
the Spark Engine. Each job is split into a number of stages 
which can be either map or reduce stages. One stage may be 
dependent on the outcomes of a previous stage. So the stages 
are executed sequentially. Each stage comprises several tasks 
which can run in parallel. The data is split and spread over the 
cluster in several partitions. The computations of one stage are 

performed on each partition in the form of a task. These tasks 
are executed as processes running in parallel over the worker 
nodes by the executor processes. Only one task is performed 
on one partition on each executor [3]. 

4. DATASET DESCRIPTION 
The number of credit card transactions is growing day-by-day 
rapidly. This problem of credit card fraud detection can be 
considered as a big data problem because of the following 
reasons. This growth leads to a high Volume of data. The 
speed of credit card transactions results in a high Velocity of 
generation of credit card transaction data. In general, credit 
card transaction data is structured, but we can make a better 
detection of a fraudulent transaction if we include the profile 
information of the card holder and the transaction into the 
fraud detection model. The Inclusion of profile information 
incorporates the Variety feature of the Big Data. The portfolio 
data are not always complete which can play a significant role 
in the prediction. Veracity dimension refers to the biases, 
noise, and uncertainty in data. The credit card transactions 
dataset is highly biased one as a fraudulent transaction is rare 
occurrence. , thus, resulting in the veracity or uncertainty in the 
data.  

We experimented with credit card fraud dataset i.e. “ccFraud” 
[4]. The ccFraud dataset has a high volume which cannot be 
processed on a single machine. Thus compelling to the use of 
distributed processing using Apache Spark. This dataset is a 
snapshot at a particular instant of time for processing, as there 
is non-availability of credit card dataset having real time 
inflow of transactions in the public domain. The ccFraud 
dataset is a highly unbalanced dataset with only 5.96% of 
fraudulent transactions, rendering the veracity in the data. 
Making the variety and veracity present by the inclusion of 
portfolio data is an identified problem area. 

The ccFraud dataset contains ten million samples. We 
considered the genuine transactions as negative samples and 
fraudulent transactions as positive samples. The negative class 
has 9,403,986 samples. The positive class has 596,014 
samples. The dataset contains 9 features with a total size of 
291.7Mb. The different variables in the dataset are: (i) custID : 
customer ID, auto-incrementing integer value, (ii) gender : 
taking two values either 1 or 2 for male and female, (iii) state : 
state number given as integer, (iv) cardholder: number of 
cards per customer with a maximum value of 2, (v) balance : 
credit balance, (vi) numTrans : number of transactions made in 
integer, (vii) numIntlTrans : number of international 
transactions made in integer, (viii) creditLine : credit limit of a 
customer in integer, and (ix) fraudRisk : whether a given 
transaction is fraud or not. The “fraudRisk” is a binary feature 
having 1 and 0 as two discrete values. Here, 1 represents a 
fraudulent transaction and 0 is used for a non-fraudulent 
transaction. In the proposed model, 7 features have been 
considered to train the PSOAANN model. We discarded the 
“custID”, since it contains unique values in all samples, which 
will disturb in the generalization of patterns. The class variable 
“fraudRisk” is also not provided at the time of training a 
PSOAANN. Since the model is to be trained with only one 
class i.e. negative samples. 

5. EXPERIMENTAL SETUP AND 
RESULT & DISCUSSION 
The experimental setup consists of standalone Spark cluster 
using the local file system as the storage system and Apache 
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Zeppelin as an editor. The Spark cluster comprises 9 worker 
nodes and a master node running the driver program. All the 
10 nodes had same configuration i.e. Intel® Core™ i7-6700 
CPU @ 3.40GHz with 8 logical cores. We allocated 24 GB of 
memory to worker nodes and 28GB of memory to the master 
node. Out of 8 logical cores, we assigned 6 logical cores to all 
ten nodes. 

The model was executed in Spark 1.6.1 and Apache Zeppelin 
0.5.6. The best execution time was achieved by tweaking the 
memory used by the executors in each worker node with the 
right number of data partitions. The data locality was achieved 
by using the local file system, thus improving the performance 
in execution time. 

The current literature does not have any experimental result 
with credit card data set in the Apache Spark or MapReduce 
distributed environment. So our result could not be compared 
with any other result to confront. 

The dataset is having 94.04% of legitimate or genuine credit 
card transactions and only 5.96% of fraudulent transactions. 
Hence the dataset is highly unbalanced, yielding to the 
complexity involved in the classification task. Without going 
for undersampling or oversampling of the biased data, we have 
conducted the experiment with one-class classification using 
legitimate transactions only and later tested the performance of 
the model by the fraudulent transactions. 

The training of the PSOAANN model was completed with 30 
runs where each run is of 20 iterations. The computational time 
for each iteration is about 51sec on an average. The model was 
dependent on the evolutionary algorithm, PSO, which uses a 
random seed. Every run is dependent on the random seed, thus 
producing varying results for different runs. Hence, inorder to 
nullify the effect of randomness caused, we ran the model for 

30 times. The execution time for each run is observed to be on 
average about 17m 05sec. 

The AANN had three layered architectures with six nodes in 
the hidden layer. The weights between input and hidden layer 
as well as hidden and output layers are initialized using 
uniform distribution in the range of [-5, 5). The MSE 
calculation resulting from AANN was minimized by PSO. The 
objective function was to minimize the MSE between the 
actual input and predicted output. PSO was used to minimize 
the MSE. The convergence plot for mean MSE value over 30 
runs versus 20 iterations is depicted in Figure 5. 

We had conducted several experiments with different PSO 
parameters and found that the inertia weight w = 0.9 gives the 
best result. We also varied the values of c1 and c2 so that their 
summation equals 4 and with several experiments, it is found 
that c1 = c2 = 2 yields a better result. Incidentally, many 
research papers e.g. [1, 10] support the values of c1 and c2 to 
be 2 for producing a superior result. Bansal et al. [1] describe 
that for minimizing error, the best strategy for inertia weight is 
to take a constant value for it. In our case, it is found to be the 
value 0.9 which produces a better result. 

The classification rate of the above runs was in the range of 
85% to 95%. The statistical inferences are as follows. The 
minimum value of Classification Rate (CR): 85.89%, 
maximum value of CR: 95.312%, arithmetic mean of CR: 
89.16%, median of CR: 88.645%, mode of CR: 87.16%, and 
standard deviation: 2.67%.  

The median of CR being 88.64% indicates that for 50% of the 
runs, CR lies above 88.64%. The arithmetic mean lies on the 
right side of the median at 89.16% indicating that the data is 
right-skewed. The mode of CR at 87.15% indicates more 
chances to get 87% of classification rate. The SD of 2.67% 
clearly shows that the observations for CR are closely placed, 
and hence the algorithm yielded a stable result. 

The proposed parallel approach uses Apache Spark for 
parallelization of datasets in a distributed clustered 
computation. In addition to that, we have implemented 
parallelization of the algorithm for the AANN. The 
implementation, involved parallelization of computations in 
the AANN in training as well as the test phase of the model 
(refer (3) to (9) in PSOAANN algorithm). Each instruction in 
AANN is carried out in a parallel manner over multiple worker 
nodes in the Spark cluster. The weight updation scheme in 
AANN using PSO is not parallelized. This aspect is left for 
future work. The whole model could not be constructed in a 
single system, as the dataset volume is large enough to fit in 
the memory of a single system. Hence, the speedup and 
efficiency measure could not be computed due to the lack of 
serial computation of the algorithm on a single machine.  

6. CONCLUSIONS 
In this paper, we employed a hybrid architecture involving 
particle swarm optimization (PSO) and auto-associative neural 
network (AANN) to get a solution for one-class classification 
(OCC) in big data paradigm in a SAPRK cluster. In this work, 
we parallelized of AANN and achieved an average of 89% true 
classification of the credit card fraud transactions. In future, we 
want to extend the work further with parallelization of PSO. 
Finally, we will compare the performance of our model with 
other machine learning tool like one-class support vector 
machine (OC-SVM). 
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