
Credit Card Fraud Detection using Big Data Analytics:
Use of PSOAANN based One-Class Classification

 Sk. Kamaruddin Vadlamani Ravi*

Centre of Excellence in Analytics,
Institute for Development and

Research in Banking Technology,
Castle Hills Road No. 1, Masab
Tank, Hyderabad-500057, India.

SCIS, University of Hyderabad,
Hyderabad-500046, India.

+91 7842480180

skkamaruddin@gmail.com

Centre of Excellence in Analytics,
Institute for Development and

Research in Banking Technology,
Castle Hills Road No. 1, Masab
Tank, Hyderabad-500057, India.

+91 9440803818

padmarav@gmail.com
*Corresponding Author

ABSTRACT
Banking and financial industries are facing severe challenges
in the form of fraudulent transactions. Credit card fraud is one
example of them. In order to detect credit card fraud, we
employed one-class classification approach in big data
paradigm. We implemented a hybrid architecture of Particle
Swarm Optimization and Auto-Associative Neural Network
for one-class classification in Spark computational framework.
In this paper, we implemented parallelization of the auto-
associative neural network in the hybrid architecture.

CCS Concepts
• Computing methodologies→Semi-supervised learning
settings • Mathematics of computing→Bio-inspired
optimization • Information systems→Clustering and
classification.

Keywords
Auto-associative neural network; Auto-encoder; One-
class classification; Particle swarm optimization; Single
class classification.

1. INTRODUCTION
A credit card is a payment card provided by every bank to
eligible customers (cardholders) to make day-to-day
transactions. Using the card, a cardholder can pay for goods
and services without having money in their account at the
particular moment and can be paid back to banks later point in
time. The legitimate transactions made by the cardholder
provide a pattern of his/her expenditures. If a card is stolen or
accessed by some fraudsters, the transactions show an
abnormal expenditure pattern and such transaction is called a
fraudulent transaction. But, compared to large voluminous
legitimate transactions, these types of transactions are
relatively rare. Therefore, identification of such fraudulent
transactions is a quite complex task, and it is a part of fraud
analytics. Due to the complexity involved in fraud analytics,
identification of fraudulent transactions always has been an

interesting research problem for banking and financial
industries, research communities and academia. The fraud
analytics can be achieved using different data mining tasks like
classification, outlier detection, etc.

Classification can be performed in various ways viz. binary,
multi-, and One-Class Classification (OCC). Binary
classification is the process to classify a set of samples into
two classes. Similarly, the multi-class classification is used to
classify a sample into three or more classes. In the case of
OCC, we have sufficient amount of samples available for one
class, whereas samples for other classes will be rare. In this
case, some rare samples do not belong to any of the known
classes. Some examples of rare events area failure of a nuclear
plant, credit card fraud, network intrusion, etc. Hence,
whenever we came across the normal /regular samples in
abundance and the targeted event in scarce, we can employ
one-class classification approach to detect the rare event.

In this study, we employed OCC for credit card fraud detection
in Big Data framework. Big Data can be attributed using 4 V’s
viz. Volume, Velocity, Variety, and Veracity [20]. Volume
refers to a huge amount of data. Velocity implies how fast data
are generated. Variety attributed to various formats of data.
Finally, veracity represents the accuracy of data. In the case of
credit card transactions, every bank deals with huge amount of
credit card transactions every hour. Here, huge amount refers
to volume and number of transactions per hour implies to
velocity. So, credit card transactions can be attributed to two
V’s of Big Data i.e. volume and velocity. For our study, we
relied upon one-class classification. Since there is a scarcity of
fraudulent credit card transactions and a binary classification
approach needs sufficient amount of historical data for both
classes like legitimate and fraudulent, we extended one-class
classification model proposed by Paramjeet et al. [16] in big
data environment using Apache Spark framework for credit
card fraud detection. Henceforth, we referred “Apache Spark”
with Spark only.

In this paper, we developed parallelization of a hybrid
architecture involving Particle Swarm Optimization (PSO) and
Auto-Associative Neural Network (AANN) which is referred
to as PSOAANN architecture. The PSOAANN architecture
was proposed by Paramjeet et al. [16]. We implemented the
AANN in a parallel manner over a Spark standalone cluster for
one-class classification. The weight updation steps using PSO
is implemented in a serial manner.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
ICIA-16, August 25-26, 2016, Pondicherry, India
© 2016 ACM. ISBN 978-1-4503-4756-3/16/08…$15.00
DOI: http://dx.doi.org/10.1145/2980258.2980319

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2980258.2980319

The remaining part of the paper is organized as follows:
Literature review is presented in Section 2. Section 3
elaborates the proposed methodology. The dataset details are
given in section 4. The results and discussion are presented in
Section 5. In Section 6, the study is concluded with some
future directions of the work.

2. LITERATURE REVIEW
In this section, we reviewed study related to one-class
classification, auto-encoders for OCC, and spark for machine
learning.

2.1 One-class Classification
Ravi and Singh [18] performed OCC using Auto-Associative
Extreme Learning Factory (AAELF). They employed AAELF
for bankruptcy prediction, credit risk prediction, and phishing
detection. Tax and Duin [23] proposed Support Vector Data
Description (SVDD). They separated the target class (negative
data objects) from the outliers (positive class data object) by
creating a hypersphere around the target data with a minimal
volume. Strackeljan et al. [22] demonstrated a fault detection
system using SVDD and a feature selection method for OCC.
Another approach used for OCC was One-class Support
Vector Machine (OC-SVM). Mourão-Miranda et al. [13] used
OC-SVM for patient classification.

2.2 Auto-encoders for OCC
As far as one-class classifier using auto-encoder or auto-
associative neural network is concerned, Pandey and Ravi [14]
have proposed a model using PSOAANN for phishing
detection in emails. Ravi et al. [17] presented classifying
capability of PSOAANN in bankruptcy prediction using
different bank datasets.

2.3 Spark for Machine Learning
Spark is a computational framework which provides iterative
and interactive computation in a clustered environment using
grand scale distributed setting. The native language for Spark
is Scala [19], a high-level language for the JVM, and provides
a functional programming interface. Spark is very efficient for
machine learning. There are different APIs in Spark for
machine learning. Meng et al. [12] have presented an open-
source distributed machine learning library, MLLib. MLLib
offers a high-level API that takes advantage of Spark’s
powerful environment. Sparks et al. [21] proposed MLI, an
API for distributed machine learning.Kraska et al. [9]
developed MLbase, a distributed machine learning system.
MLbase provides a simple way to specify ML tasks. It
dynamically selects a learning algorithm, which helps an ML
researcher to work with ease. MLbase is quite optimized for
data access.

Spark has been successfully used in a variety of applications of
ML. Bharill et al. [3] proposed a clustering algorithm called
Scalable Random Sampling with Iterative Optimization Fuzzy
c-Means algorithm(SRSIO-FCM) with Spark to handle the
challenges associated with big data clustering. Panigrahi et al.
[15] have proposed a Hybrid Distributed Collaborative
Filtering Recommender Engine (HDCFRE) using Spark. They
experimented with MovieLens dataset. The parallel
implementation of HDCFRE using Spark outperformed other
traditional collaborative filtering algorithms. McNeil et al. [11]
implemented Scalable Real-time Anomalies Detection and
Notification of Targeted Malware in Mobile Devices
(SCREDENT) using Spark. The authors developed a system to

detect the mobile malwares in real-time. Bello-Orgaz et al. [2]
surveyed the different tools for machine learning for social
media data on a big data paradigm. They used Spark for
massive data processing for the efficient utilization of ML
algorithms in different domains.

3. PROPOSED METHODOLOGY

3.1 Particle Swarm Optimization
(PSO)
PSO, developed by Eberhartand Kennedy [7] is a population-
based optimization algorithm. It is a bio-inspired algorithm
which mimics the behavior of a flock of birds or a school of
fish in the search of food. PSO implementation is easy due to
the tweaking of a few parameters. PSO generates solution by
sharing knowledge mutually among all the particles present in
the population to achieve the goal.

The process of PSO involves two basic steps. First, an update
of the velocity of a particle. Second, the update of the position
with the help of updated velocity of the particle. The two
equations are given below:

𝑉𝑑
𝑖+1 = 𝑤 ∗ 𝑉𝑑

𝑖 + 𝑐1 ∗ 𝑟1
𝑖 ∗ (𝑃𝑑

𝑖 − 𝑥𝑑
𝑖) + 𝑐2 ∗ 𝑟2

𝑖 ∗ (𝑃𝑑
𝑔

− 𝑥𝑑
𝑖)

 (1)

𝑥𝑑
𝑖+1 = 𝑥𝑑

𝑖 + 𝑉𝑑
𝑖+1 (2)

where 𝑉𝑑
𝑖 is the velocity of the particle at the instant of ith

iteration i.e. old velocity, 𝑉𝑑
𝑖+1 is the velocity of the particle at

the instant of (i+1)th iteration i.e. new velocity, 𝑃𝑑
𝑖 is the best

position travelled through a particle,𝑃𝑑
𝑔 is the best position

travelled through all the particles, 𝑥𝑑
𝑖 and 𝑥𝑑

𝑖+1are the positions
of a particle at the instant of ith iteration and (i+1)th iteration
respectively. The subscript𝑑is the dth dimension of the data
object. The variable 𝑤 is the inertia weight value, 𝑐1 and 𝑐2are
two predefined positive constants, 𝑟1 and 𝑟2 are random
numbers generated through uniform distribution U(0, 1).

3.2 Auto-Associative Neural Network
(AANN)
AANN, developed by Kramer [8], is a variant of neural
network where the number of nodes in the input layer is same
as the output layer. Thus, it is named as auto-associative. The
proposed model of Kramer contains three hidden layers viz.
mapping layer, bottle-neck layer, and de-mapping layer. The
AANN is a supervised model where the inputs are compared
against the outputs of the model. Thereupon the error between
inputs and outputs were optimized.

3.3 Architecture of PSOAANN
Paramjeet et al. [16] proposed PSOAANN, which comprises
three layers, i.e. input, hidden, and an output layer. The input
and output layers contain an equal number of nodes that is to
represent the same variables in the input as well as the output
layer. The number of hidden nodes is specified by the user.
Each input node of the input layer is connected to all the nodes
of the hidden layer. Similarly, each hidden node, in turn, is
connected to all nodes of the output layer. The Sigmoid
activation function is used in the hidden and output layers [16].

At the end of the training phase, the nodes in the output layer
contain the perturbed values of the original input variables. In
other words, the PSOAANN is non-linearly transforming the

original set of input variables into a set of perturbed values.
There are well-known drawbacks in back propagation
algorithm such as slow convergence and entrapment in local
minima. To overcome these drawbacks, we have used a swarm
intelligence technique, PSO which is an evolutionary approach
for weight update, instead of the back-propagation.

We presented the architecture of PSOAANN in Figure 1.
Figure 1 depicts the training and testing modules of
PSOAANN. We considered mean squared error (MSE) as the
error function. The advantages of using a three layered AANN
for one-class classification over the five layered architecture of
AANN [8] are decreasing computation time and the associated
complexity.

The algorithm for PSOAANN is presented below.

1. Training phase of PSOAANN algorithm: Specify the
required number of hidden nodes. Initialize randomly the
weight values between the input and the hidden layers (W) and
also between the hidden and the output layers (W') using
uniform distribution in the range (–5, 5). The PSOAANN
model is trained with negative class samples (i.e. legitimate
credit card transactions) only. The input nodes take the
normalized input which is calculated as below. The output
nodes contain the input variables as the target variables thereby
bringing in the auto association concept.

 𝑥𝑑𝑘
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =

𝑥𝑑𝑚𝑎𝑥−𝑥𝑑𝑘

𝑥𝑑𝑚𝑎𝑥−𝑥𝑑𝑚𝑖𝑛
 (3)

where 𝑥𝑑𝑚𝑎𝑥, 𝑥𝑑𝑚𝑖𝑛are the maximum and minimum value of
the dimension ‘d’ in the input data object and𝑥𝑑𝑘is the input
value of dimension ‘d’ of kth input object.

2. Compute 𝑥𝑑𝑘^ as follows: 𝑥𝑑𝑘is the actual input and 𝑥𝑑𝑘^ is the
predicted input. Let m be the number of nodes in the both input
and output layer; n be the number of nodes in the hidden layer.
The predicted output is calculated as follows:

Computation at Hidden layer for each hidden node:

The input value is multiplied by the randomly initialized
weight values W is given by (Hj):

 𝐻𝑗 = ∑ 𝑥𝑑𝑘
𝑚
𝑘=1 ∗ 𝑤𝑘𝑗 (4)

where j = 1 to n, for n hidden nodes;𝑥𝑑𝑘is the input value of
dimension ‘d’ of kth input object and𝑤𝑘𝑗is the weight from kth
input node to jth hidden node.

Then sigmoid function is applied to Hj, given as below.

 𝑆(𝐻𝑗) =
1

1+𝑒
−𝐻𝑗

 (5)

where Hj is given by (4).

Computation at Output layer for each output node:

The output of sigmoid function at hidden layer (S(Hj)) is
multiplied by the randomly initialized weight values W' is
given by (Oi):

 𝑂𝑖 = ∑ 𝑆𝑛
𝑗=1 (𝐻𝑗) ∗ 𝑤𝑗𝑖 (6)

where i = 1 to m, for, m output (= input) nodes, S(Hj) is given
by (5) and𝑤𝑗𝑖is the weight from jth hidden node to ith output
node.

Then sigmoid function is applied to Oi, given as below:

 𝑆(𝑂𝑖) =
1

1+𝑒−𝑂𝑖
 (7)

where Oi is given by (6).

As the sigmoid function results in a predictive value,𝑥𝑑𝑘^ in [0,
1] which is compared with the normalised input,𝑥𝑑𝑘that results
into the Mean Square Error (MSE).

3. Compute error measure (MSE) E as follows:

 𝐸 =
1

𝑚𝑛
∑ ∑ (𝑥𝑑𝑘^ − 𝑥𝑑𝑘)2𝑛

𝑑=1
𝑚
𝑘=1 (8)

4. The MSE is optimized using PSO by updating all weights.
The user-defined parameters in (1) are taken as, inertia weight
= 0.9, c1 = c2 = 2.

5. Repeat Steps 2 to 4 until convergence is achieved or the max
number of iterations is completed.

6. The Testing phase of PSOAANN algorithm: The PSOAANN
model was trained on negative samples. The model learns the
characteristics of samples belonging to majority class. The
objective is to minimize the MSE. When the model was
properly trained, it was tested on positive samples. The model
will produce larger MSEs at the testing time compared to
training phase. Pattern classification is achieved at the test
phase by computation of relative error for each of the features
present in the input and output data. In this case, the outputs

Normalized Negative Class Data

Model Training in a Distributed environment

Optimization Algorithm (PSO) to optimize
network parameters

Model Testing (with positive class data)

m input units m output units

n hidden units

Statistical evaluation of model outputs

𝑋1

𝑋2

𝑋𝑚−1

𝑋𝑚

�̂�1

�̂�2

�̂�𝑚

�̂�𝑚−1

Figure 1: Architecture of hybrid model of PSOAANN

are approximations of inputs. If the relative error is having a
larger value than a threshold value for all the input features,
then a sample is considered to belong to the positive class.
Here, the threshold value is specified by the user, and we have
taken it as 0.05. Otherwise, the sample is identified to belong
to the negative class.

Relative Error =
|𝑥𝑑𝑘^ −𝑥𝑑𝑘|

𝑥𝑑𝑘
 (9)

The classification rate is computed using equation (10)

Classification rate =
No. of transactions classified as Fraud

No. of total transactions in Positive Class
∗ 100

 (10)

The training of PSOAANN falls under both unsupervised and
supervised learning. It is unsupervised because we do not
provide the class or output variable information to the AANN
during training. The input variables are mapped onto
themselves. It is supervised because the weights of AANN are
updated by PSO where the fitness function of the particles viz.,
MSE is minimized. Therefore, PSO-based training algorithm
provides supervised learning.

3.4 Hadoop MapReduce vs. Spark
Hadoop MapReduce (MR) [6] is difficult to program and
needs abstraction, whereas Spark is easy to program and does
not require any abstraction. The Spark has interactive mode
whereas Hadoop MR does not possess interactive mode except
Pig and Hive. Hadoop MR processes data in batch mode and
produces reports for answering the queries on historical data.
On the other hand, Spark can handle streaming data and allows
us to modify the data in real time. Hadoop MR has more
latency as the partial results are stored in the disk. In the case
of Spark, it uses primary memory for caching partial results
across the memory of distributed workers, which helps in
faster execution. Zaharia et al. [26] claimed that Hadoop falls
behind Spark by a factor of 10 in iterative machine learning
workloads. A machine learning algorithm involves the iterative
and interactive mode of execution. In this case, Hadoop falls
behind in latency of execution time in comparison to Spark.

3.5 Spark and Data Parallelization
Spark is a computational framework for cluster computing
environment involving distributed data processing. A Cluster
is a group of machines connected to LAN and communicating
through Secure Shell (SSH).It provides iterative, interactive,
and scalable data processing. It provides high-level APIs in
Java, Scala, Python and R and also interactively can be used
from Scala, Python and R shells. Spark can run on a single
machine as well as over several machines with existing cluster
managers. Spark has the following options for deployment: (i)
Amazon EC2, (ii) Standalone Deploy Mode, (iii) Apache
Mesos, and (iv) Hadoop YARN. It can access diverse data
sources including Hadoop Distributed File System (HDFS),
Cassandra, HBase, and Amazon S3 (Simple Storage
Service)[5].

Spark uses Resilient Distributed Datasets (RDDs), which is a
distributed memory abstraction. RDDs allow in-memory
computations on a distributed environment with fault-
tolerance. RDDs present influential role in two types of
applications viz. iterative algorithms and interactive approach.
Other computing frameworks like Hadoop MR does not
provide the same. Each RDD is having five pieces of
information which can be accessed through a common

interface. First, a set of partitions, which are atomic pieces of
the dataset. Second, the preferred location for a partition,
which is required for faster access due to data locality. Third, a
set of dependencies on parent RDDs, which is needed for
computation on RDDs. Fourth, an iterator, which is required
for computation of elements in the partition with the help of
iterators of parent RDDs. Finally, the fifth one is metadata
about partitioning scheme and data placement [25]. The
concept of RDD provides the parallelization of the algorithm
through the partitions of data. Apart from providing in-
memory storage, RDDs can also automatically recover from
failures. Each RDD tracks the graph of transformations that
was used to build it, called its lineage graph. These lineage
graphs help in the reconstruction of any lost partitions through
re-execution of operations on base data [24].

Spark has an inherent feature of executing iterative programs
and interactive mode of execution for user-friendly data
analysis. Figure 2 depicts the components of Spark
computational environment. The user interacts with the top
layer through the computing interface. The top layer provides
usage of different APIs for the Spark application. The Spark
applications interact with cluster manager for accessing the
data from the distributed data storage.

A Spark cluster has two main components: master node and
worker nodes. Each machine in the cluster is known as a node.
There is a single master node and more than one worker nodes
in a cluster. The system which is the master node can also
serve as a worker node. The master node allocates jobs to the
worker nodes. A distributed file system e.g. HDFS, a cloud
storage system e.g. S3 or a local file system is used for data
storage. Spark can run on a single-node cluster setup having
both master node and the worker node on the same machine. It
also runs in a multi-node cluster setup. Spark applications run
as independent sets of processes on a cluster. The Spark
applications coordinate among themselves using a
SparkContext object in the main program, which is also known
as the driver program. For running spark on a cluster, the
SparkContext connects to one of cluster managers. A Spark
cluster can have several types of cluster managers (i.e. either
Spark’s standalone cluster manager, Mesos or YARN), which
allocate resources across applications. When the SparkContext

Computing Interface for Spark

API (Scala, Python, Java, R)

Cluster Manager for Distributed Computing

(Standalone, Yarn or Mesos)

Distributed Data Storage

(HDFS, Other formats)

Figure 2: Components of Spark
computational environment

is connected with the cluster manager, Spark acquires
executors on worker nodes of the cluster. Here, an executor is
a process that performs computations and storage operations

for an application. Next, it sends application code to the
executors. Finally, SparkContext assigns tasks to the executors
to run [5]. The cluster components are presented in Figure 3.

A job is a part of the code in the Spark application which takes
inputs from HDFS/local file system, performs computations on
them. A job writes outputs to an HDFS/local file system.
Figure 4 depicts how a job is distributed on a Spark Cluster. A
driver process runs on the master node and executes a job over
the Spark Engine. Each job is split into a number of stages
which can be either map or reduce stages. One stage may be
dependent on the outcomes of a previous stage. So the stages
are executed sequentially. Each stage comprises several tasks
which can run in parallel. The data is split and spread over the
cluster in several partitions. The computations of one stage are

performed on each partition in the form of a task. These tasks
are executed as processes running in parallel over the worker
nodes by the executor processes. Only one task is performed
on one partition on each executor [3].

4. DATASET DESCRIPTION
The number of credit card transactions is growing day-by-day
rapidly. This problem of credit card fraud detection can be
considered as a big data problem because of the following
reasons. This growth leads to a high Volume of data. The
speed of credit card transactions results in a high Velocity of
generation of credit card transaction data. In general, credit
card transaction data is structured, but we can make a better
detection of a fraudulent transaction if we include the profile
information of the card holder and the transaction into the
fraud detection model. The Inclusion of profile information
incorporates the Variety feature of the Big Data. The portfolio
data are not always complete which can play a significant role
in the prediction. Veracity dimension refers to the biases,
noise, and uncertainty in data. The credit card transactions
dataset is highly biased one as a fraudulent transaction is rare
occurrence. , thus, resulting in the veracity or uncertainty in the
data.

We experimented with credit card fraud dataset i.e. “ccFraud”
[4]. The ccFraud dataset has a high volume which cannot be
processed on a single machine. Thus compelling to the use of
distributed processing using Apache Spark. This dataset is a
snapshot at a particular instant of time for processing, as there
is non-availability of credit card dataset having real time
inflow of transactions in the public domain. The ccFraud
dataset is a highly unbalanced dataset with only 5.96% of
fraudulent transactions, rendering the veracity in the data.
Making the variety and veracity present by the inclusion of
portfolio data is an identified problem area.

The ccFraud dataset contains ten million samples. We
considered the genuine transactions as negative samples and
fraudulent transactions as positive samples. The negative class
has 9,403,986 samples. The positive class has 596,014
samples. The dataset contains 9 features with a total size of
291.7Mb. The different variables in the dataset are: (i) custID :
customer ID, auto-incrementing integer value, (ii) gender :
taking two values either 1 or 2 for male and female, (iii) state :
state number given as integer, (iv) cardholder: number of
cards per customer with a maximum value of 2, (v) balance :
credit balance, (vi) numTrans : number of transactions made in
integer, (vii) numIntlTrans : number of international
transactions made in integer, (viii) creditLine : credit limit of a
customer in integer, and (ix) fraudRisk : whether a given
transaction is fraud or not. The “fraudRisk” is a binary feature
having 1 and 0 as two discrete values. Here, 1 represents a
fraudulent transaction and 0 is used for a non-fraudulent
transaction. In the proposed model, 7 features have been
considered to train the PSOAANN model. We discarded the
“custID”, since it contains unique values in all samples, which
will disturb in the generalization of patterns. The class variable
“fraudRisk” is also not provided at the time of training a
PSOAANN. Since the model is to be trained with only one
class i.e. negative samples.

5. EXPERIMENTAL SETUP AND
RESULT & DISCUSSION
The experimental setup consists of standalone Spark cluster
using the local file system as the storage system and Apache

Serial

Execution

Job

St
ag

e
1

St
ag

e
2

St
ag

e
3

St
ag

e
n

Ta
sk

 1

Ta
sk

2

Ta
sk

3

Parallel Execution

Figure 4: Execution of Job, Stage and Task in
Apache Spark

Master Node

Driver Program

Spark
Context

Cluster Manager

Worker Node

Executor Cache

Task Task

Worker Node

Executor Cache

Task Task

Figure 3: Spark Cluster Components

Zeppelin as an editor. The Spark cluster comprises 9 worker
nodes and a master node running the driver program. All the
10 nodes had same configuration i.e. Intel® Core™ i7-6700
CPU @ 3.40GHz with 8 logical cores. We allocated 24 GB of
memory to worker nodes and 28GB of memory to the master
node. Out of 8 logical cores, we assigned 6 logical cores to all
ten nodes.

The model was executed in Spark 1.6.1 and Apache Zeppelin
0.5.6. The best execution time was achieved by tweaking the
memory used by the executors in each worker node with the
right number of data partitions. The data locality was achieved
by using the local file system, thus improving the performance
in execution time.

The current literature does not have any experimental result
with credit card data set in the Apache Spark or MapReduce
distributed environment. So our result could not be compared
with any other result to confront.

The dataset is having 94.04% of legitimate or genuine credit
card transactions and only 5.96% of fraudulent transactions.
Hence the dataset is highly unbalanced, yielding to the
complexity involved in the classification task. Without going
for undersampling or oversampling of the biased data, we have
conducted the experiment with one-class classification using
legitimate transactions only and later tested the performance of
the model by the fraudulent transactions.

The training of the PSOAANN model was completed with 30
runs where each run is of 20 iterations. The computational time
for each iteration is about 51sec on an average. The model was
dependent on the evolutionary algorithm, PSO, which uses a
random seed. Every run is dependent on the random seed, thus
producing varying results for different runs. Hence, inorder to
nullify the effect of randomness caused, we ran the model for

30 times. The execution time for each run is observed to be on
average about 17m 05sec.

The AANN had three layered architectures with six nodes in
the hidden layer. The weights between input and hidden layer
as well as hidden and output layers are initialized using
uniform distribution in the range of [-5, 5). The MSE
calculation resulting from AANN was minimized by PSO. The
objective function was to minimize the MSE between the
actual input and predicted output. PSO was used to minimize
the MSE. The convergence plot for mean MSE value over 30
runs versus 20 iterations is depicted in Figure 5.

We had conducted several experiments with different PSO
parameters and found that the inertia weight w = 0.9 gives the
best result. We also varied the values of c1 and c2 so that their
summation equals 4 and with several experiments, it is found
that c1 = c2 = 2 yields a better result. Incidentally, many
research papers e.g. [1, 10] support the values of c1 and c2 to
be 2 for producing a superior result. Bansal et al. [1] describe
that for minimizing error, the best strategy for inertia weight is
to take a constant value for it. In our case, it is found to be the
value 0.9 which produces a better result.

The classification rate of the above runs was in the range of
85% to 95%. The statistical inferences are as follows. The
minimum value of Classification Rate (CR): 85.89%,
maximum value of CR: 95.312%, arithmetic mean of CR:
89.16%, median of CR: 88.645%, mode of CR: 87.16%, and
standard deviation: 2.67%.

The median of CR being 88.64% indicates that for 50% of the
runs, CR lies above 88.64%. The arithmetic mean lies on the
right side of the median at 89.16% indicating that the data is
right-skewed. The mode of CR at 87.15% indicates more
chances to get 87% of classification rate. The SD of 2.67%
clearly shows that the observations for CR are closely placed,
and hence the algorithm yielded a stable result.

The proposed parallel approach uses Apache Spark for
parallelization of datasets in a distributed clustered
computation. In addition to that, we have implemented
parallelization of the algorithm for the AANN. The
implementation, involved parallelization of computations in
the AANN in training as well as the test phase of the model
(refer (3) to (9) in PSOAANN algorithm). Each instruction in
AANN is carried out in a parallel manner over multiple worker
nodes in the Spark cluster. The weight updation scheme in
AANN using PSO is not parallelized. This aspect is left for
future work. The whole model could not be constructed in a
single system, as the dataset volume is large enough to fit in
the memory of a single system. Hence, the speedup and
efficiency measure could not be computed due to the lack of
serial computation of the algorithm on a single machine.

6. CONCLUSIONS
In this paper, we employed a hybrid architecture involving
particle swarm optimization (PSO) and auto-associative neural
network (AANN) to get a solution for one-class classification
(OCC) in big data paradigm in a SAPRK cluster. In this work,
we parallelized of AANN and achieved an average of 89% true
classification of the credit card fraud transactions. In future, we
want to extend the work further with parallelization of PSO.
Finally, we will compare the performance of our model with
other machine learning tool like one-class support vector
machine (OC-SVM).

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

1 3 5 7 9 11 13 15 17 19

M
ea

n
 M

SE
 V

al
u

es

Iteration Counts

Figure 5: Mean MSE Convergence Plot

7. REFERENCES
[1] Bansal, J. C., Singh, P. K., Saraswat, M., Verma, A.,

Jadon, S. S., and Abraham, A. (2011). Inertia weight
strategies in particle swarm optimization. In Nature and
Biologically Inspired Computing (NaBIC), (Salamanca,
Spain, October 19 - 21, 2011).IEEE NaBIC '11, 633-640.
DOI=http://dx.doi.org/10.1109/NaBIC.2011.6089659.

[2] Bello-Orgaz, G., Jung, J. J., & Camacho, D. (2016).
Social big data: Recent achievements and new challenges.
Information Fusion. 28 (Mar. 2016), 45-59. DOI=
http://dx.doi.org/10.1016/j.inffus.2015.08.005.

[3] Bharill, N., Tiwari, A., and Malviya, A. (2016). Fuzzy
Based Clustering Algorithms to Handle Big Data with
Implementation on Apache Spark. In Proceedings of the
IEEE 2nd International Conference on Big Data
Computing Service and Applications, (Oxford, UK,
March 29 – April 01, 2016). IEEE BigDataService '16,
95-104. DOI=
http://dx.doi.org/10.1109/BigDataService.2016.34.

[4] ccFraud Dataset: Apr. 2013.
http://packages.revolutionanalytics.com/datasets/.
Accessed: 2016- 06- 14.

[5] Cluster Mode Deployment Spark 1.6.1: Mar. 2016.
http://spark.apache.org/docs/latest/cluster-overview.html.
Accessed: 2016- 06- 14.

[6] Dean, J., andGhemawat, S. (2008). MapReduce:
simplified data processing on large clusters.
Communications of the ACM. (Jan. 2008), 51, 1, 107-
113. DOI= http://dx.doi.org/10.1145/1327452.1327492.

[7] Eberhart, R. C., and Kennedy, J. 1995. A new optimizer
using particle swarm theory. In Proceedings of the 6th
International Symposium on Micro Machine and Human
Science, (Nagoya city, Aichi, Japan, October 04 - 06,
1995). MHS '95. 1, 39-43. DOI=
http://dx.doi.org/10.1109/MHS.1995.494215.

[8] Kramer, M. A. 1991. Nonlinear principal component
analysis using autoassociative neural networks. AIChE
journal. 37, 2, (Feb. 1991), 233-243. DOI=
http://dx.doi.org/10.1002/aic.690370209.

[9] Kraska, T., Talwalkar, A., Duchi, J. C., Griffith, R.,
Franklin, M. J., and Jordan, M. I. 2013. MLbase: A
Distributed Machine-learning System. In Proceedings of
the 6th Biennial Conference on Innovative Data Systems
Research, (Asilomar, California, USA, January 6 – 9,
2013).CIDR '13, 1, 2-1.

[10] Maheshkumar, Y., Ravi, V., and Abraham, A. (2013). A
particle swarm optimization-threshold accepting hybrid
algorithm for unconstrained optimization. Neural
Network World, 2013, 23, 3, 191 - 221.

[11] McNeil, P., Shetty, S., Guntu, D., & Barve, G. (2016).
SCREDENT: Scalable Real-time Anomalies Detection
and Notification of Targeted Malware in Mobile Devices.
In Proceedings of the2ndInternational Workshop on
Mobile Cloud Computing systems, Management, and
Security. (Madrid, Spain, May 23-26, 2016). MCSMS '16.
Procedia Computer Science, 83, 1219-1225. DOI=
http://dx.doi.org/10.1016/j.procs.2016.04.254.

[12] Meng, X., Bradley, J., Yavuz, B., Sparks, E.,
Venkataraman, S., Liu, D., Freeman, J., Tsai, D.B.,

Amde, M., Owen, S., and Xin, D. 2015. Mllib: Machine
learning in apache spark. arXiv preprint
arXiv:1505.06807.

[13] Mourão-Miranda, J., Hardoon, D. R., Hahn, T.,
Marquand, A. F., Williams, S. C., Shawe-Taylor, J., and
Brammer, M. (2011). Patient classification as an outlier
detection problem: an application of the one-class support
vector machine. NeuroImage. 58, 3, (Oct. 2011), 793-804.
DOI=
http://dx.doi.org/10.1016/j.neuroimage.2011.06.042.

[14] Pandey, M., and Ravi, V. 2013. Phishing Detection Using
PSOAANN Based One-Class Classifier. In Proceedings
of the 6th International Conference on Emerging Trends
in Engineering and Technology, (Nagpur, Maharashtra,
India, December 16 - 18, 2013). ICETET '13, 148-153.
DOI= http://dx.doi.org/10.1109/ICETET.2013.46.

[15] Panigrahi, S., Lenka, R. K., & Stitipragyan, A. (2016). A
Hybrid Distributed Collaborative Filtering Recommender
Engine Using Apache Spark. In Proceedings of the
International Workshop on Big Data and Data Mining
Challenges on IoT and Pervasive Systems, (Madrid,
Spain, May 23-26, 2016). BigD2M '16. Procedia
Computer Science, 83, 1000-1006. DOI=
http://dx.doi.org/10.1016/j.procs.2016.04.214.

[16] Paramjeet, Ravi, V., Naveen, N., and Rao, C. R. (2012).
Privacy preserving data mining using particle swarm
optimisation trained auto-associative neural network: an
application to bankruptcy prediction in banks.
International Journal of Data Mining, Modelling and
Management, 4, 1, 39-56. DOI=
http://dx.doi.org/10.1504/IJDMMM.2012.045135.

[17] Ravi, V., Nekuri, N., & Das, M. 2012. Particle swarm
optimization trained auto associative neural networks
used as single class classifier. In Proceedings of the 3rd
International Conference on Swarm, Evolutionary, and
Memetic Computing, (Bhubaneswar, Odisha, India,
December 20 - 22, 2012). SEMCCO '12, 577-584. DOI=
http://dx.doi.org/10.1007/978-3-642-35380-2_67.

[18] Ravi, V., and Singh, P. 2014. Auto-associative extreme
learning factory as a single class classifier. In
Proceedings of the IEEE International Conference on
Computational Intelligence and Computing Research,
(Coimbatore, Tamilnadu, India, December 18 – 20,
2014). ICCIC '14, 1-6. DOI=
http://dx.doi.org/10.1109/ICCIC.2014.7238402.

[19] Scala programming language. http://www.scala-lang.org.
[20] Schroeck, M., Shockley, R., Smart, J., Romero-Morales,

D., and Tufano, P. 2012. Analytics: The real-world use of
big data: How innovative enterprises extract value from
uncertain data, Executive Report, IBM Global Business
Services, Business Analytics and Optimization. (New
York, USA, October 2012). 1-22.

[21] Sparks, E. R., Talwalkar, A., Smith, V., Kottalam, J., Pan,
X., Gonzalez, J., Franklin, M.J., Jordan, M.I., and Kraska,
T. (2013). MLI: An API for distributed machine learning.
In Proceedings of the 13th IEEE International
Conference on Data Mining, (Dallas, Texas, USA,
December 07 – 10, 2013). ICDM '13, 1187-1192. DOI=
http://dx.doi.org/10.1109/ICDM.2013.158.

http://dx.doi.org/10.1109/NaBIC.2011.6089659
http://dx.doi.org/10.1016/j.inffus.2015.08.005
http://dx.doi.org/10.1109/BigDataService.2016.34
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1016/j.procs.2016.04.254
http://dx.doi.org/10.1016/j.neuroimage.2011.06.042
http://dx.doi.org/10.1109/ICETET.2013.46
http://dx.doi.org/10.1016/j.procs.2016.04.214
http://dx.doi.org/10.1504/IJDMMM.2012.045135
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1109/ICCIC.2014.7238402
http://www.scala-lang.org/
http://dx.doi.org/10.1109/ICDM.2013.158

[22] Strackeljan, J., Goreczka, S., and Behr, D. 2012. A fault
detection concept for single class problems.In
Proceedings of the 9th International Conference on
Condition Monitoring and Machinery Failure Prevention
Technologies, (London, UK, June 12 – 14, 2012). CM '12
and MFPT '12, 675-682.

[23] Tax, D. M., and Duin, R. P.2002. Uniform object
generation for optimizing one-class classifiers. The
Journal of Machine Learning Research. 2, (Jan. 2002),
155-173.

[24] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,
Mccauley, M., Franklin, M., Shenker, S. and Stoica, I.
(2012). Fast and interactive analytics over Hadoop data
with Spark. In USENIX; login. 37, 4, 45-51.

[25] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,
McCauley, M., Franklin, M. J., Shenker, S., and Stoica, I.
2012. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In
Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation, (San Jose, CA,
USA, April 25 - 27, 2012). NSDI '12, 2-2.

[26] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S.,
and Stoica, I. (2010). Spark: Cluster Computing with
Working Sets. In HotCloud, 10, 10-10.

	1. INTRODUCTION
	2. LITERATURE REVIEW
	2.1 One-class Classification
	2.2 Auto-encoders for OCC
	2.3 Spark for Machine Learning

	3. PROPOSED METHODOLOGY
	3.1 Particle Swarm Optimization (PSO)
	3.2 Auto-Associative Neural Network (AANN)
	3.3 Architecture of PSOAANN
	3.4 Hadoop MapReduce vs. Spark
	3.5 Spark and Data Parallelization

	4. DATASET DESCRIPTION
	5. EXPERIMENTAL SETUP AND RESULT & DISCUSSION
	6. CONCLUSIONS
	7. REFERENCES

