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ABSTRACT 

This paper focuses on the design and implementation of a 
distributed, highly scalable, and fault-tolerant anti-fraud service 
accessible via REST API. Web service works in near real-time 
and employs machine learning algorithms for predictive analytics. 
Our goal is to develop an affordable anti-fraud service, which 
provides a possibility for participating parties (i.e. merchants, 
aggregating agents, payment systems, and banks) to reduce the 
risks of fraudulent payments over their sites. We explore a number 
of approaches resulting in a significant reduction of hardware and 
software costs as well as the size of the team working on the 
project. 

Categories and Subject Descriptors 
D.4.6 [Operating Systems]: Security and Protection—
information flow controls; H.2.8 [Information Systems]: 
Database Applications—Data mining; H.3.5 [Information 
Systems]: Online Information Services—Web-based services 

General Terms 
Algorithms, Security, Languages 

Keywords 
Credit card fraud, machine learning, data mining, cloud 
technologies. 

1. INTRODUCTION 
The rapid growth in a quantity of transactions with credit cards 
made over the Internet poses new challenges for the developers of 
payment acceptance systems due to the increasing scale and 
complexity of frameworks required to provide system safety and 
security. 

A quantity of fraudulent transactions and a variety of fraud types 
grows no less rapidly. Russia, along with the UK, France, 

Germany, and Spain, is in the top 5 European countries with the 
highest annual volume of credit card fraud. The total volume of 
losses caused by credit card fraud has exceeded 1 billion euro in 
2013 in Europe and out of them 110 million euro is accounted for 
Russia. 

The problem of fraudulent transactions over the Internet affects 
the whole chain from the customer to the card-issuing bank. This 
involves significant financial expenses and reputational risks for 
all the participating parties, except for cardholders. The fraud also 
has tangible negative consequences for e-commerce industry that 
prevents a wider spread of electronic payments. 

An effective way to reduce the costs on the part of the merchant is 
to introduce additional verifications for the client as well as to 
delegate (partially or completely) responsibilities for verification 
to another participant, e.g. 3D-Secure technology. However, 
additional steps that require follow-up actions may result in 
dramatic reduction in the amount of successfully completed 
transactions (up to 25% on certain categories of goods). 

Section 2 describes technical and non-technical requirements in 
order to reduce the production and owning costs for an anti-fraud 
system.  

Section 3 describes the service software architecture, its modular 
structure and key implementation details. 

2. REQUIREMENTS 

2.1 System Challenges 
An anti-fraud system is a business-critical system and its 
downtime can cause the business process interruption, or (when 
the system operates incorrectly) increase the risks of financial and 
reputational losses for the company that owns the system.  

That is why there are some standard requirements for such 
systems: (a) fault-tolerance, (b) reliability, and (c) security of data 
storage and data transfer. In addition to the above requirements, 
the following specifications exist: (d) distribution, and (e) high 
scalability. 

We toughen the requirements for the security of data storage and 
transfer yet more to comply with PCI DSS1 standard and 
provisions of the Russian Federal Law No. 152-FZ “On Personal 
Data”:  

• not to store PAN and CVV (in no form); 
                                                                 
1 PCI DSS (Payment Card Industry Data Security Standard) – a 

list of requirements to ensure the storage and transmission 
safety for payment data. 
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• to store the rest of the data in a secure form; 
• to transfer information between the software client and 

anti-fraud system only via secure channels of 
communication;  

• to work with depersonalized data only. 

2.2 Business Requirements 
The main reasons for transaction refusal are payment data 
generated improperly or a fraudulent transaction.  

2.2.1 Validity check for payment data introduction 
Anti-fraud service verifies payment data coming from the software 
client. Regardless of whether it was user’s error or malicious 
actions, early identification of errors in payment details can save 
CPU resources, and prevent noise masking of a learning model. 

It is necessary to check whether the name of the cardholder 
contains at least two characters (dash and numbers in the name are 
acceptable) as well as whether the card is valid (the card has a 
validity period), and whether the card number passes Luhn 
algorithm2 checks. 

2.2.2 Transaction check for fraud 
There are many heuristics to identify the fraud.  At the same time, 
the number of heuristics exceeding 100 may lead to overfitting, 
incorrect identification of fraudulent transactions, and overall 
decrease in application performance. 

The most effective heuristics included in the design model are: 

• many-to-one relationships (multiple online credit card 
transactions made with different cards on a single IP 
address); 

• one-to-many relationships (multiple IP and email 
addresses); 

• the name of the card holder is not the same as the name 
of the internet-account owner forwarding the payment;  

• the country of the cardholder does not coincide with the 
country of the Internet account owner forwarding the 
payment; 

• payment made late at night (according to the local time 
of the client). 

2.2.3 Global Filters 
Allow to blacklist fraudulent purchasers by blocking specific 
credit card numbers, specific IP addresses, specific email 
domains, specific countries, cities, or regions. Global filters are 
either static or dynamic, they deal both with business rules (e.g. to 
reject payments from a particular country), and with abnormal 
activity detection (IP address). 

3. DESIGN 
Web service consists of several applications running on a cloud 
platform: 

                                                                 
2 Luhn algorithm – an algorithm for calculating the card number 

check digit. It is designed for detection of errors caused by 
unintentional data corruption. It confirms that the card number 
contains no errors (with some degree of confidence only. 

• Anti-Fraud API Service – REST-service providing API 
for interaction with Fraud Predictor ML service. 

• Fraud Predictor ML – fraud detection service based on 
machine learning algorithms. 

• Transaction Log – NoSQL transaction data storage. 

In addition, the service includes numerous software clients which 
are Web applications or JavaScript widgets calling REST services 
of Anti-Fraud API Service. 

3.1 Infrastructure  
Web service is run on a publicly available Microsoft Azure cloud 
platform.  

3.2 Architecture  
Cloud-ready architecture relies on the following design patterns 
[5]:  

• web/worker-nodes are stateless; 
• horizontal partitioning (sharding) for structured and 

semi-structured data (Sharding Pattern); 
• asynchronous network interactions using retry policies 

(Retry Pattern); 
• message queues for load balancing and guaranteed task 

processing (Queue-Based Load Leveling Pattern). 

To achieve near real-time performance, we use the following 
approaches: 

• parallel data processing algorithms (i.e. MapReduce); 
• Push'n'Forget paradigm to save unit records in the 

transaction log (one missing record out of 10K 
successful records will not essentially influence the 
precision of machine learning algorithms); 

• no locking of transaction logs (by adding the timestamp 
field); 

• killing slow queries. 

3.3 Anti-Fraud API Service 
For the merchant, the service is a REST service accessible via 
https. Anti-Fraud API Service operates in a cluster consisting of 
several stateless web roles (Azure web role is an application layer 
operating as a web application). 

The sequence diagram is as follows: 

Step 1. Requesting payment information. 

Step 2. Model transformation (in terms of MVC). 

Step 3. Sending request to a service predicting the result of a 
payment. 

Step 4. Reporting the result, whether the payment is successful or 
not. 

Step 5. Saving the data. 

Step 6. Returning the result to the client.  

Step 7, 8. Recalculation and update of the training sample, model 
retraining. 

Step 9-12 (optional). The client initiates a request with 
information on the payment result (in the case when the prediction 
differs from the actual payment result transmitted in a request). 



3.4 Transaction Log 
Both transactions and supplementary data (mainly statistics) are 
stored in the transaction log – long-term storage based on Azure 
Table. Transaction log consists of two tables: 

• TransactionsInfo table with transaction facts: 
Transaction ID (Row Key), Merchant ID, card holder 
name hash (if available), amount and currency of 
payment; 

• TransactionsStatistics table with the following statistical 
metrics: quantity of payment made with the card 
(several timeframes), number of IP addresses, time 
intervals between payments, how long the buyer is 
registered with the merchant, and how many payments 
were successful. 

The model is retrained during steps 7 and 8. The training sample 
is a transaction log data. Retraining is made either on schedule, by 
the occurrence of a fixed value of new records in the transaction 
log or at the threshold level of incorrect predictions. 

3.5 Fraud Predictor ML 
Identification of various types of fraud is a typical supervised 
learning task. We use Azure Machine Learning cloud service for 
predictive analytics. 

3.5.1 Obtaining data 
Data set for fraud authorization model will be a transaction log. 

3.5.2 Data preparation and examinations 
We create Inner Join of loaded tables in TransactionId field with 
String, Integer and Timestamp data types, select a column with 
answers (labels) and columns with predictors (features) with 
Nominal and Absolute data types.  

We replace null values with “undefined”. We also remove the 
lines where cardholder, payment amount and/or the currency 
fields have missing values as well as the lines containing 
knowingly incorrect data that is a noise for the model. The next 
step is to get rid of unused model fields: address, cardholder name 
hash, RowId, and PartitionId. 

We make ZScore-normalization for data containing big numeric 
values such as payment amount (TransactionAmount column). 

3.5.3 Data splitting 
We split the resulting data set into training (70%) and test (30%) 
sample. We flag Randomized split option when dividing into data 
subsets in order to avoid “distortions” in the learning sample 
associated with massive credit card data leakage (and, as a 
consequence, the abnormal activity of fraud robots in this period). 

3.5.4 Building and evaluating the model  
We experiment with several classification algorithms and evaluate 
their performance in order to select which one is the best fit for 
our task. 

We use several algorithms for two-class classification in this 
study: Two-Class Logistic Regression, Two-Class Boosted 
Decision Tree (gradient boostimg), Two-Class Support Vector 
Machine, Two-Class Neural Network. 

Two-Class Boosted Decision Tree algorithm accepts the following 
parameters: number of trees to be built and minimum/maximum 
number of leaves on each tree; Two-Class Neural Network 
algorithm accepts the number of hidden nodes and learning 
iterations as well as initial weights. 

4. EVALUATION 
The cost of undetected (missed) fraudulent attempts (False 
Negative) is much higher than the cost of payments mistakenly 
taken for fraud (False Positive). At a Threshold level of 0.28, the 
value of Area Under Curve (AUC) metric is 0.955 (Accuracy = 
0.880, Precision = 0.710, Recall = 0.873, and F1 Score = 0.783). 

It some cases it is critical to explain a reason for the decision. 
Many analysts still prefer decision trees to neural networks as the 
former are easier to interpret. 

After choosing the “right” model, we publish a scoring 
experiment in Machine Learning Studio as a web service. API 
documentation includes a description of the expected input 
formats and output messages as well as examples of service calls 
in C#, Python, and R.  

5. RELATED WORK 
Most of the papers contribute to an extensive and growing list of 
data mining techniques in credit card fraud detection. Those 
include but are not limited to neural networks [1, 3, 6], Bayesian 
learning [14, 17], support vector machines (SVMs) [12], 
AdaBoost ensemble learning [4], decision trees [20], a hidden 
Markov Model [10], evolutionary algorithms [7], and self-
organized maps [2]. Although banks rely heavily on neural 
network based solutions [18], there is no evident preference for 
one technique over the overs. Classification is still, by far, the 
most common type of data mining tasks in credit card fraud 
studies [15].  

[4] is one of the earliest papers on distributed data mining in 
credit card fraud detection. The authors put an early focus on 
scalable techniques to analyze massive amounts of transaction 
data and compute efficient fraud detectors in a timely manner. 
More recent papers [11, 19] tend to explore real-time fraud 
detection solutions. A typical present-day example of a corporate 
anti-fraud system, namely Yandex.Money, relies on real-time 
transaction analysis using BRE Web Rule (now Code Effects) 
system and ThreatMetrix cloud-based real-time device 
identification. [13] examines feasibility of MapReduce 
mechanisms in fraud detection, e.g. for the task of scalable and 
efficient outlier detection in large distributed data sets. Beymani 
software consists of a set of Hadoop- and Storm-based tools for 
sequence based outlier and anomaly detection that can be used for 
fraud detection. [8] put an emphasis on the fact that areas such as 
credit card fraud detection have been highly interested in tailored 
Big Data solutions using MapReduce and Hadoop. 

An extensive list of open research problems is given in [16]. To 
compensate for the lack of labeled data, an author foresees a 
growing need for unsupervised techniques (profiling, fraud 
signature analysis, outlier detection, clustering, community 
detection, dependency analysis, etc.) as well as adapting 
techniques from semi-supervised learning, deep learning, transfer 
learning and co-training. 



6. CONCLUSIONS AND FUTURE WORK 
Eventually, we end up with a cloud-based anti-fraud service with 
an external REST API. Leveraging the power of predictive 
analytics our web service reduces the initial costs for 
infrastructure and software virtually to zero.  

At this point, we develop a series of auxiliary tools and 
subsystems in order to provide a truly seamless solution. Machine 
learning part requires parameter fine-tuning to yield optimal 
classifier performance. 
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