
Web Service for Detecting Credit Card Fraud
in Near Real-Time

Alexey Tselykh
Southern Federal University

44 Nekrasovsky Street
Taganrog, 347928, Russia

+7 8634 371743
tselykh@sfedu.ru

Dmitry Petukhov
Immanuel Kant Baltic Federal University,

Quantum Art
Moscow, Russia

dpetukhov@0xcode.in

ABSTRACT

This paper focuses on the design and implementation of a
distributed, highly scalable, and fault-tolerant anti-fraud service
accessible via REST API. Web service works in near real-time
and employs machine learning algorithms for predictive analytics.
Our goal is to develop an affordable anti-fraud service, which
provides a possibility for participating parties (i.e. merchants,
aggregating agents, payment systems, and banks) to reduce the
risks of fraudulent payments over their sites. We explore a number
of approaches resulting in a significant reduction of hardware and
software costs as well as the size of the team working on the
project.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
information flow controls; H.2.8 [Information Systems]:
Database Applications—Data mining; H.3.5 [Information
Systems]: Online Information Services—Web-based services

General Terms
Algorithms, Security, Languages

Keywords
Credit card fraud, machine learning, data mining, cloud
technologies.

1. INTRODUCTION
The rapid growth in a quantity of transactions with credit cards
made over the Internet poses new challenges for the developers of
payment acceptance systems due to the increasing scale and
complexity of frameworks required to provide system safety and
security.

A quantity of fraudulent transactions and a variety of fraud types
grows no less rapidly. Russia, along with the UK, France,

Germany, and Spain, is in the top 5 European countries with the
highest annual volume of credit card fraud. The total volume of
losses caused by credit card fraud has exceeded 1 billion euro in
2013 in Europe and out of them 110 million euro is accounted for
Russia.

The problem of fraudulent transactions over the Internet affects
the whole chain from the customer to the card-issuing bank. This
involves significant financial expenses and reputational risks for
all the participating parties, except for cardholders. The fraud also
has tangible negative consequences for e-commerce industry that
prevents a wider spread of electronic payments.

An effective way to reduce the costs on the part of the merchant is
to introduce additional verifications for the client as well as to
delegate (partially or completely) responsibilities for verification
to another participant, e.g. 3D-Secure technology. However,
additional steps that require follow-up actions may result in
dramatic reduction in the amount of successfully completed
transactions (up to 25% on certain categories of goods).

Section 2 describes technical and non-technical requirements in
order to reduce the production and owning costs for an anti-fraud
system.

Section 3 describes the service software architecture, its modular
structure and key implementation details.

2. REQUIREMENTS

2.1 System Challenges
An anti-fraud system is a business-critical system and its
downtime can cause the business process interruption, or (when
the system operates incorrectly) increase the risks of financial and
reputational losses for the company that owns the system.

That is why there are some standard requirements for such
systems: (a) fault-tolerance, (b) reliability, and (c) security of data
storage and data transfer. In addition to the above requirements,
the following specifications exist: (d) distribution, and (e) high
scalability.

We toughen the requirements for the security of data storage and
transfer yet more to comply with PCI DSS1 standard and
provisions of the Russian Federal Law No. 152-FZ “On Personal
Data”:

• not to store PAN and CVV (in no form);

1 PCI DSS (Payment Card Industry Data Security Standard) – a

list of requirements to ensure the storage and transmission
safety for payment data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SIN '15, September 08-10, 2015, Sochi, Russian Federation
© 2015 ACM. ISBN 978-1-4503-3453-2/15/09…$15.00
DOI: http://dx.doi.org/10.1145/2799979.2800039

• to store the rest of the data in a secure form;
• to transfer information between the software client and

anti-fraud system only via secure channels of
communication;

• to work with depersonalized data only.

2.2 Business Requirements
The main reasons for transaction refusal are payment data
generated improperly or a fraudulent transaction.

2.2.1 Validity check for payment data introduction
Anti-fraud service verifies payment data coming from the software
client. Regardless of whether it was user’s error or malicious
actions, early identification of errors in payment details can save
CPU resources, and prevent noise masking of a learning model.

It is necessary to check whether the name of the cardholder
contains at least two characters (dash and numbers in the name are
acceptable) as well as whether the card is valid (the card has a
validity period), and whether the card number passes Luhn
algorithm2 checks.

2.2.2 Transaction check for fraud
There are many heuristics to identify the fraud. At the same time,
the number of heuristics exceeding 100 may lead to overfitting,
incorrect identification of fraudulent transactions, and overall
decrease in application performance.

The most effective heuristics included in the design model are:

• many-to-one relationships (multiple online credit card
transactions made with different cards on a single IP
address);

• one-to-many relationships (multiple IP and email
addresses);

• the name of the card holder is not the same as the name
of the internet-account owner forwarding the payment;

• the country of the cardholder does not coincide with the
country of the Internet account owner forwarding the
payment;

• payment made late at night (according to the local time
of the client).

2.2.3 Global Filters
Allow to blacklist fraudulent purchasers by blocking specific
credit card numbers, specific IP addresses, specific email
domains, specific countries, cities, or regions. Global filters are
either static or dynamic, they deal both with business rules (e.g. to
reject payments from a particular country), and with abnormal
activity detection (IP address).

3. DESIGN
Web service consists of several applications running on a cloud
platform:

2 Luhn algorithm – an algorithm for calculating the card number

check digit. It is designed for detection of errors caused by
unintentional data corruption. It confirms that the card number
contains no errors (with some degree of confidence only.

• Anti-Fraud API Service – REST-service providing API
for interaction with Fraud Predictor ML service.

• Fraud Predictor ML – fraud detection service based on
machine learning algorithms.

• Transaction Log – NoSQL transaction data storage.

In addition, the service includes numerous software clients which
are Web applications or JavaScript widgets calling REST services
of Anti-Fraud API Service.

3.1 Infrastructure
Web service is run on a publicly available Microsoft Azure cloud
platform.

3.2 Architecture
Cloud-ready architecture relies on the following design patterns
[5]:

• web/worker-nodes are stateless;
• horizontal partitioning (sharding) for structured and

semi-structured data (Sharding Pattern);
• asynchronous network interactions using retry policies

(Retry Pattern);
• message queues for load balancing and guaranteed task

processing (Queue-Based Load Leveling Pattern).

To achieve near real-time performance, we use the following
approaches:

• parallel data processing algorithms (i.e. MapReduce);
• Push'n'Forget paradigm to save unit records in the

transaction log (one missing record out of 10K
successful records will not essentially influence the
precision of machine learning algorithms);

• no locking of transaction logs (by adding the timestamp
field);

• killing slow queries.

3.3 Anti-Fraud API Service
For the merchant, the service is a REST service accessible via
https. Anti-Fraud API Service operates in a cluster consisting of
several stateless web roles (Azure web role is an application layer
operating as a web application).

The sequence diagram is as follows:

Step 1. Requesting payment information.

Step 2. Model transformation (in terms of MVC).

Step 3. Sending request to a service predicting the result of a
payment.

Step 4. Reporting the result, whether the payment is successful or
not.

Step 5. Saving the data.

Step 6. Returning the result to the client.

Step 7, 8. Recalculation and update of the training sample, model
retraining.

Step 9-12 (optional). The client initiates a request with
information on the payment result (in the case when the prediction
differs from the actual payment result transmitted in a request).

3.4 Transaction Log
Both transactions and supplementary data (mainly statistics) are
stored in the transaction log – long-term storage based on Azure
Table. Transaction log consists of two tables:

• TransactionsInfo table with transaction facts:
Transaction ID (Row Key), Merchant ID, card holder
name hash (if available), amount and currency of
payment;

• TransactionsStatistics table with the following statistical
metrics: quantity of payment made with the card
(several timeframes), number of IP addresses, time
intervals between payments, how long the buyer is
registered with the merchant, and how many payments
were successful.

The model is retrained during steps 7 and 8. The training sample
is a transaction log data. Retraining is made either on schedule, by
the occurrence of a fixed value of new records in the transaction
log or at the threshold level of incorrect predictions.

3.5 Fraud Predictor ML
Identification of various types of fraud is a typical supervised
learning task. We use Azure Machine Learning cloud service for
predictive analytics.

3.5.1 Obtaining data
Data set for fraud authorization model will be a transaction log.

3.5.2 Data preparation and examinations
We create Inner Join of loaded tables in TransactionId field with
String, Integer and Timestamp data types, select a column with
answers (labels) and columns with predictors (features) with
Nominal and Absolute data types.

We replace null values with “undefined”. We also remove the
lines where cardholder, payment amount and/or the currency
fields have missing values as well as the lines containing
knowingly incorrect data that is a noise for the model. The next
step is to get rid of unused model fields: address, cardholder name
hash, RowId, and PartitionId.

We make ZScore-normalization for data containing big numeric
values such as payment amount (TransactionAmount column).

3.5.3 Data splitting
We split the resulting data set into training (70%) and test (30%)
sample. We flag Randomized split option when dividing into data
subsets in order to avoid “distortions” in the learning sample
associated with massive credit card data leakage (and, as a
consequence, the abnormal activity of fraud robots in this period).

3.5.4 Building and evaluating the model
We experiment with several classification algorithms and evaluate
their performance in order to select which one is the best fit for
our task.

We use several algorithms for two-class classification in this
study: Two-Class Logistic Regression, Two-Class Boosted
Decision Tree (gradient boostimg), Two-Class Support Vector
Machine, Two-Class Neural Network.

Two-Class Boosted Decision Tree algorithm accepts the following
parameters: number of trees to be built and minimum/maximum
number of leaves on each tree; Two-Class Neural Network
algorithm accepts the number of hidden nodes and learning
iterations as well as initial weights.

4. EVALUATION
The cost of undetected (missed) fraudulent attempts (False
Negative) is much higher than the cost of payments mistakenly
taken for fraud (False Positive). At a Threshold level of 0.28, the
value of Area Under Curve (AUC) metric is 0.955 (Accuracy =
0.880, Precision = 0.710, Recall = 0.873, and F1 Score = 0.783).

It some cases it is critical to explain a reason for the decision.
Many analysts still prefer decision trees to neural networks as the
former are easier to interpret.

After choosing the “right” model, we publish a scoring
experiment in Machine Learning Studio as a web service. API
documentation includes a description of the expected input
formats and output messages as well as examples of service calls
in C#, Python, and R.

5. RELATED WORK
Most of the papers contribute to an extensive and growing list of
data mining techniques in credit card fraud detection. Those
include but are not limited to neural networks [1, 3, 6], Bayesian
learning [14, 17], support vector machines (SVMs) [12],
AdaBoost ensemble learning [4], decision trees [20], a hidden
Markov Model [10], evolutionary algorithms [7], and self-
organized maps [2]. Although banks rely heavily on neural
network based solutions [18], there is no evident preference for
one technique over the overs. Classification is still, by far, the
most common type of data mining tasks in credit card fraud
studies [15].

[4] is one of the earliest papers on distributed data mining in
credit card fraud detection. The authors put an early focus on
scalable techniques to analyze massive amounts of transaction
data and compute efficient fraud detectors in a timely manner.
More recent papers [11, 19] tend to explore real-time fraud
detection solutions. A typical present-day example of a corporate
anti-fraud system, namely Yandex.Money, relies on real-time
transaction analysis using BRE Web Rule (now Code Effects)
system and ThreatMetrix cloud-based real-time device
identification. [13] examines feasibility of MapReduce
mechanisms in fraud detection, e.g. for the task of scalable and
efficient outlier detection in large distributed data sets. Beymani
software consists of a set of Hadoop- and Storm-based tools for
sequence based outlier and anomaly detection that can be used for
fraud detection. [8] put an emphasis on the fact that areas such as
credit card fraud detection have been highly interested in tailored
Big Data solutions using MapReduce and Hadoop.

An extensive list of open research problems is given in [16]. To
compensate for the lack of labeled data, an author foresees a
growing need for unsupervised techniques (profiling, fraud
signature analysis, outlier detection, clustering, community
detection, dependency analysis, etc.) as well as adapting
techniques from semi-supervised learning, deep learning, transfer
learning and co-training.

6. CONCLUSIONS AND FUTURE WORK
Eventually, we end up with a cloud-based anti-fraud service with
an external REST API. Leveraging the power of predictive
analytics our web service reduces the initial costs for
infrastructure and software virtually to zero.

At this point, we develop a series of auxiliary tools and
subsystems in order to provide a truly seamless solution. Machine
learning part requires parameter fine-tuning to yield optimal
classifier performance.

7. ACKNOWLEDGMENTS
The reported study was supported by RFBR, research project No.
15-01-09139 А.

8. REFERENCES
[1] Aleskerov, E., Freisleben, B., and Rao, B. CARDWATCH:

A neural network based database mining system for credit
card fraud detection. 1997. In Proceedings of IEEE/IAFE
Conference on Computational Intelligence for Financial
Engineering (New York City, NY, USA, March 23 – 25,
1997). CIFEr’97. IEEE, 220-226.
DOI=http://dx.doi.org/10.1109/CIFER.1997.618940.

[2] Bansal, M. and Suman. Credit Card Fraud Detection Using
Self Organised Map. 2014. International Journal of
Information & Computation Technology. 4, 13 (2014), 1343-
1348.

[3] Brause, R., Langsdorf, T., and Hepp, M. Neural data mining
for credit card fraud detection. 1999. In Proceedings of the
11th IEEE International Conference on Tools with Artificial
Intelligence (Chicago, IL, USA, November 09 – 11, 1999).
IEEE, 103-106. DOI=
http://dx.doi.org/10.1109/TAI.1999.809773.

[4] Chan, P.K., Fan, W., Prodromidis, A.L., and Stolfo, S.J.
Distributed data mining in credit card fraud detection. 1999.
IEEE Intell. Syst. App. 14, 6 (Nov./Dec. 1999), 67-74. DOI=
http://dx.doi.org/10.1109/5254.809570.

[5] Dean, J. and Ghemawat, S. MapReduce: Simplified data
processing on large clusters. 2008. Commun. ACM. 51, 1
(Jan. 2008), 107-113. DOI=
http://dx.doi.org/10.1145/1327452.1327492.

[6] Dorronsoro, J.R., Ginel, F., Sánchez, C., and Santa Cruz, C.
Neural fraud detection in credit card operations. 1997. IEEE
T. Neural. Networ. 8, 4 (Jul. 1997), 827-834. DOI=
http://dx.doi.org/10.1109/72.595879.

[7] Duman, E. and Özçelik, M.H. Detecting credit card fraud by
genetic algorithm and scatter search. 2011. Expert Syst. Appl.
38, 10 (Sep. 2011), 13057-13063. DOI=http://dx.doi.org/
10.1016/j.eswa.2011.04.110.

[8] Grolinger, K., Hayes, M., Higashino, W.A., L'Heureux, A.,
Allison, D.S., and Capretz, M.A.M. Challenges for
MapReduce in Big Data. 2014. In Proceedings of the 2014
IEEE World Congress on Services (Anchorage, AK, USA,
June 27 – July 02, 2014). SERVICES’14. IEEE, 182-189.
DOI= http://dx.doi.org/10.1109/SERVICES.2014.41.

[9] Homer, A., Sharp, J., Brader, L., Narumoto, M., and
Swanson, T. 2014. Cloud Design Patterns: Prescriptive
Architecture Guidance for Cloud Applications. Microsoft
patterns & practices.

[10] Iyer, D., Mohanpurkar, A., Janardhan, S., Rathod, D., and
Sardeshmukh, A. Credit card fraud detection using hidden
Markov model. 2011. In Proceedings of the 2011 World
Congress on Information and Communication Technologies
(Mumbai, India, December 11 – 14, 2011). WICT’11. IEEE,
1062-1066.
DOI=http://dx.doi.org/10.1109/WICT.2011.6141395.

[11] Khan, A., Akhtar, N., and Qureshi, M. Real-Time Credit-
Card Fraud Detection using Artificial Neural Network Tuned
by Simulated Annealing Algorithm. 2014. In Proceedings of
International Conference on Recent Trends in Information,
Telecommunication and Computing (Chandigarh, India,
March 21, 2014). ITC’14. ACEEE, 113-121.
DOI=http://dx.doi.org/02.ITC.2014.5.65.

[12] Lu, Q. and Ju, C. Research on credit card fraud detection
model based on class weighted support vector machine.
2011. Journal of Convergence Information Technology. 6, 1
(Jan. 2011), 62-68. DOI=
http://dx.doi.org/10.4156/jcit.vol6.issue1.8.

[13] Mardani, S., Akbari, M.K., and Sharifian, S. Fraud detection
in Process Aware Information systems using MapReduce.
2014. In Proceedings of 2014 6th Conference on
Information and Knowledge Technology (Shahrood, Iran,
May 27 – 29, 2014). IKT’14. IEEE, art. no. 7030339, 88-91.
DOI= http://dx.doi.org/10.1109/IKT.2014.7030339.

[14] Mukhanov, L.E. Using bayesian belief networks for credit
card fraud detection. 2008. In Proceedings of the IASTED
International Conference on Artificial Intelligence and
Applications (Innsbruck, Austria, February 11 – 13, 2008).
AIA’08, 221-225.

[15] Ngai, E.W.T., Hu, Y., Wong, Y.H., Chen, Y., and Sun, X.
The application of data mining techniques in financial fraud
detection: A classification framework and an academic
review of literature. 2011. Decis. Support Syst. 50, 3 (Feb.
2011), 559-569. DOI=
http://dx.doi.org/10.1016/j.dss.2010.08.006.

[16] Palshikar, G.K. Detecting frauds and money laundering: A
tutorial. 2014. Lect. Notes Comput. Sc. 8883, 145-160. DOI=
http://dx.doi.org/10.1007/978-3-319-13820-6_12.

[17] Panigrahi, S., Kundu, A., Sural, S., and Majumdar, A.K.
Credit card fraud detection: A fusion approach using
Dempster-Shafer theory and Bayesian learning. 2009.
Information Fusion. 10, 4 (Oct. 2009), 354-363. DOI=
http://dx.doi.org/10.1016/j.inffus.2008.04.001.

[18] Pun, J. Improving Credit Card Fraud Detection using a
MetaClassification Strategy. 2014. International Journal of
Computer Applications. 56, 10 (Oct. 2012), 41-46. DOI=
http://dx.doi.org/10.5120/8930-3007.

[19] Quah, J.T.S. and Sriganesh, M. Real-time credit card fraud
detection using computational intelligence. 2008. Expert
Syst. Appl. 35, 4 (Nov. 2008), 1721-1732. DOI=
http://dx.doi.org/10.1016/j.eswa.2007.08.093.

[20] Sahin, Y. and Duman, E. Detecting Credit Card Fraud by
Decision Trees and Support Vector Machines. 2011. In
Proceedings of the International Multiconference of
Engineers and Computer Scientists (Hong Kong, March 16 –
18, 2011). IMECS’11. DOI= http://dx.doi.org/
10.1.1.421.359

	1. INTRODUCTION
	2. REQUIREMENTS
	2.1 System Challenges
	2.2 Business Requirements
	2.2.1 Validity check for payment data introduction
	2.2.2 Transaction check for fraud
	2.2.3 Global Filters

	3. DESIGN
	3.1 Infrastructure
	3.2 Architecture
	3.3 Anti-Fraud API Service
	3.4 Transaction Log
	3.5 Fraud Predictor ML
	3.5.1 Obtaining data
	3.5.2 Data preparation and examinations
	3.5.3 Data splitting

	We split the resulting data set into training (70%) and test (30%) sample. We flag Randomized split option when dividing into data subsets in order to avoid “distortions” in the learning sample associated with massive credit card data leakage (and, as...
	3.5.4 Building and evaluating the model

	4. EVALUATION
	5. RELATED WORK
	6. CONCLUSIONS AND FUTURE WORK
	7. ACKNOWLEDGMENTS
	8. REFERENCES

