The Internet of Things (IoT) provides big opportunities for technologies. The device business will reach $45B in 2024, contributing to a total IoT market of $400B.
Table of Contents

- **Executive Summary** .. 7
- **Introduction** .. 29
 - Internet of Things Promises
 - Definition
 - Report Scope
 - Sensors for IoT Applications
 - Structure of IoT
 - IoT Map Device

- **Seven Generations of IoT Sensors to appear** 55
 - Industrial sensors – Description & Characteristics
 - First Generation – Description & Characteristics
 - Advanced Generation – Description & Characteristics
 - Integrated IoT Sensors – Description & Characteristics
 - Polytronics Systems – Description & Characteristics
 - Sensors’ Swarm – Description & Characteristics
 - Printed Electronics – Description & Characteristics
 - IoT Generation Roadmap

- **Market Forecasts 2014 - 2024** 84
 - Market Structure Value (in $M)
 - Market Value by Application Domain (in $M)
 - Volume Forecasts (Munits)
 - Cost Breakdown per Module (in $M)
 - Market Value per Generation (in $M)
 - Market Volume per Generation (Munits)

- **IoT Characteristics, Challenges & Roadmap** 104
 - Adapted Price Systems
 - Form Factor
 - Low Power Consumption
 - Protocols & Standards
 - Privacy & Security
 - Market Traction
 - Reliability & Lifespan
 - Data to Process

- **IoT Development Examples** 136
 - ACOEM Eagle
 - EnOcean Push Button
 - NEST Sensor
 - Ninja Blocks
 - And more...

- **Focus on Wearable Electronics** 167

- **Technological Analysis** ... 184
 - Wireless Sensor Structure
 - Energy Storage Module
 - Power Management Module
 - RF Module
 - Sensing Module

- **Conclusion** ... 273
About the Authors

Dr. Guillaume Girardin

Dr. Guillaume Girardin works as a Market & Technology Analyst for MEMS devices and technologies at Yole Développement. Guillaume holds a Ph.D. in Physics and Nanotechnology from Claude Bernard University Lyon I and a M.Sc. in Technology and Innovation Management from EM Lyon - School of Business.
Contact: girardin@yole.fr

Antoine Bonnabel

Antoine Bonnabel works as a Market & Technology Analyst for MEMS devices and technologies at Yole Développement. Antoine holds a M.Sc. in Microelectronics and Microsystems from Grenoble Institute of Technologies and a M.Sc. in Marketing and Business Management from Grenoble Graduate School of Business.
Contact: bonnabel@yole.fr

Dr. Eric Mounier

Dr. Eric Mounier co-founded Yole Développement in 1998. He oversees technology analysis for MEMS-related manufacturing technologies and Optical MEMS (including micromirrors, micro-displays, autofocus and IR micro-bolometers) applications within the company. Eric has also developed a unique cost modeling tool, called “MEMSCoSim”, which is able to evaluate the cost of MEMS module manufacturing.
Contact: mounier@yole.fr
Companies Listed in this Report

Key Features

- The objectives of this report is to provide:

 - Understanding of IoT value chain structure (device, data cloud), application areas and technologies involved
 - Technology trends and evolution of IoT device in the coming years
 - Market forecast for IoT devices in Munits and $M for 2014 – 2024, with a focus on sensors
 - IoT applications and examples overview (building automation, transportation, healthcare, industry, etc.) with a focus on wearable electronics
 - The technological challenges faced by IoT devices, with a focus on wireless, energy, power, RF and sensing modules
Who Should Be Interested in this Report?

- **R&D, Components Manufacturers Companies**
 - Evaluate market potential of future IoT technologies and products for new applicative markets
 - Spot new opportunities and define diversification strategies
 - Position your company in the ever changing IoT market structure

- **OEMs & Integrator Companies**
 - To evaluate benefits of integrating sensors in IoT devices
 - Get the list of key players and emerging start-ups in this industry

- **Cloud & Telecommunications Companies**
 - Understand the evolution of IoT devices and the market structure
 - Understand the differentiated value of products and services in this market
 - Identify new business opportunities and prospects

- **Financial & Strategic Investors**
 - Understand the potential of incoming Internet of Things revolution
 - Get the list of key players and emerging start-ups in this industry
Report Scope

• Yole’s definition of the Internet of Things is as follows:
 – Internet of Things devices is the aggregation of all the sensing modules that are linked
 to the Cloud – either directly or through a gateway – and which data is processed and
 valorized in any manner (through selling to a third party, through monitoring of a piece
 of equipment, etc.).

• This report looks at the Internet of Things market in general, but with a strong
 focus on sensing modules. We do not detail the cloud computing industry nor
 the data processing services.

• We do not include in our valorizations the benefit brought by IoT solutions
 through productivity gains. The values estimated are from hardware, cloud
 computing processing services and data processing services charging.
IoT Global Market Structure (1/3)
Area Of Application

- Building Automation
- Retail & Logistics
- Consumer & Home automation
- Healthcare & Life Science
- Industrial
- Transportation
- Security & Public Safety
- Environment
• Here are the main applications of IoT devices and sensors associated with.

Legend:

- **Sensor**
- **Level of demand**

SENSORS OF THE INTERNET OF THINGS

Building Automation
- Light (IR, visible)
- Temperature
- Chemical (CO2)
- Accelero
- Contact

Healthcare & Life science
- Pressure
- Temperature
- Chemical
- Light (IR, X-Ray)
- Bio Sensors
- Inertial

Consumer & Home automation
- Gyroscope
- Temperature
- Chemical
- Pressure
- Accelero
- Magneto

Transportation
- Gyroscope
- Temperature
- Pressure
- Accelero
- Magneto
- Chemical

Industrial
- Pressure
- Hall Effect
- Chemical
- Light (IR, Optical)
- Accelero

Environment
- Chemical
- Temperature
- Light (IR, visible)
- Pressure
- Humidity

Security & Public Safety
- Gyro
- Light (IR, X-Ray, THz)
- Accelero
- Magneto
- Chemical

Retail & Logistics
- Light (IR/Optical)
- Pressure
- Temperature
- Chemical
- Magneto
IoT Wireless Sensors Map

Sensing Module
- Accelerometers
- Magnetometers
- Gyroscopes
- Acoustic Sensors
- Pressure Sensors
- Humidity Sensors
- Temperature Sensors
- Proximity Sensors
- Image Sensors
- Light Sensors
- Gas RFID Sensors
- Micro Flow Sensors

RF Module
- Signal Processing Unit
- Radio Transceiver
- Wifi
- ZigBee
- Bluetooth LE

RF Module
- Bluetooth
- ZigBee

Energy Storage Module
- Li-ion battery
- AAA/AA Batteries
- Energy Harvesting

Energy Storage Module
- Ultra-capacitors
- Microbatteries

Power Management Module
- PMU
- Ultra-capacitors
- Microbatteries
Solution Price IoT Roadmap

Solution Price per sensor module

- Rosemount 3051C Smart Pressure Transmitter
 Source: Rosemount

- NEST Smart Thermostat
 (current price: $250)
 Source: NEST

- Fitness Activity Tracker
 (current price: $130)
 Source: Jawbone

- Multiple temperature sensors for home automation
 (current price: $75)
 Source: EnOcean

- MEMS-based chemical sensing
 Source: Opto Microelectronics

- Sensors’ swarm - Michigan Micro-Mote
 Source: University of Michigan

- Batch-level RFID Temperature Sensor Tags
 (current price: $ range)
 Source: ThinFilm Electronics

- Item-level RFID sensor tags

Today
2016
2018
2020
2024
2024+
Summary of Technologies of IoT
Forecast: Hardware Market Value by Application Domain

Market Value by Domains of Applications ($M)

- Cloud
- Environment
- Security & Public Safety
- Retail & Logistics
- Industrial
- Healthcare & Life Science
- Consumer & Home Automation
- Building Automation
- Automotive

The global wearable electronics market can be segmented in 5 categories. Head-Wear category includes helmet product and vision aid. There’s also a category of products for neck-wear, with collars and necklace products that cover up electronics with jewels. Arm-Wear category is the most burgeoning category with multiples devices expected wristband, smart watches, ring, armband, etc. Body-Wear products include smart clothing, and devices monitoring back/spine position. And the last category concerns foot-wear.
Wearable Electronic
A new opportunity for sensor fusion / processing

- **Wearable electronics is a new big opportunity for sensors**
 - Fitness / activity monitoring, healthcare, sports applications
 - In many cases the sensor acts as a hub
 - Basic calculations can be done at the device level
 - After transmission (enabled by low energy Bluetooth): advanced software / fusion can be done by the smartphone
 - Below are many examples of such developments:

I'm watch (2012)
- Integrates accelerometer + magnetometer

Moto 360 by Motorola (End 2014)
- Other connected watches are currently in development by major OEMs
 (LG G Watch, rumors about Apple iWatch...)

Pebble Watch (0.4 MUnits sold in 2013)
- Features STMicroelectronics accelerometer
Wearable Electronic / Connected Devices

Examples of new devices (2/4)

BodyMedia (Acquired by Jawbone in 2013)
- Integrates MEMS accelerometer (from Kionix and STMicroelectronics) in its systems for fitness application
- We note that no gyroscopes are used presently. This would enable more precise monitoring and new sport applications, however power consumption would be too high. It could be part of larger systems in the future.

Jawbone Up24

MYO by ThalmicLabs
- Proprietary EMG muscle activity sensors
- Nine-axis IMU containing:
 - three-axis gyroscope
 - three-axis accelerometer
 - three-axis magnetometer

Cell Phone as a Hub

NodeKore from Variable Technologies

© 2014 • Yole Développement Copyrights 2014 – MEMS Report